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Convex Optimization Problems

minimize
subject to

(affine)
(      : convex)
(      : convex)

Note: A problem is quasiconvex
if      is quasiconvex and                     are convex.

The feasible set of a convex (or quasiconvex) optimization 
problem is convex.

Convex function Quasi-convex function
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Semidefinite Programming Problem (SDP)

minimize
subject to

where

(LMI)

: a set of symmetric matrix (size    )
: a symmetric matrix                    is a negative 
semidefinite if the following inequality holds. 

Note: Multiple constraints are trivially combined into a single (larger) constraint,

iff
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Linear Matrix Inequality (LMI)

: Constant Symmetric Matrices

: Affine Functions: Symmetric Matrix,
Ex.

Set of     satisfying                 is convex, i.e.,

: Variables

General Formulation

for every             satisfying

Convex Optimization Problem

Formulation

,
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LMI Numerical Optimization Problems

Convex Feasibility Problem(CFP)[Ex.]

Convex Optimization Problem(COP)[Ex.]

Quasi-convex Optimization Problem(QOP)[Ex.]

find s.t.

s.t.

s.t. , and

: Affine functions

Fact Set of     satisfying LMI condition            is  a convex set.
Suppose any         satisfy                                  . Then
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LMI Numerical Optimization Problems
[Ex.] Scaled        Norm Condition

For a internally stable system ,

where and , which is a structured sym. matrix set

[CFP] find such that

[COP] min subject to (*) over       and

(*)

[Ex.]

[QOP] min subject to (*) over      ,             and

Standard Solvers: SDP, Projection Algorithm(interior-point method)
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Matrix norm minimization (Maximum singular value)

minimize
where is an LMI

The equivalent SDP

minimize

subject to : a positive semidefinite

Decision variables:

Note: The constraint equivalence follows from a Schur complement argument

[Ex.]
Semidefinite Programming Problem (SDP)
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LMI Programming: CVX

http://cvxr.com/cvx/

MATLAB Software for Disciplined Convex Programming

Stephen P. Boyd

Michael C. Grant
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LMI Programming: CVX
cvx_begin sdp
variable P(n,n) symmetric
A’*P + P*A <= -eye(n)
P >= eye(n)

cvx_end

CVX Command
[Ex.] Proving the stability of a system:

cvx_statusNote: is a string returning the status of the optimization

(*)

(i)

(iii)
(ii)

The following conditions are equivalent:
(*) is stable, i.e.,

(iv)
(v)

A candidate of Lyapunov function ,
Stability Condition: 
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LMI Programming: CVX
[Ex.] Proving the stability of two systems,

and

The stability can be proven with a single Lyapunov function,

(*) is stable for

cvx_begin sdp
variable P(n,n) symmetric
A1’*P + P*A1 <= -eye(n)
A2’*P + P*A2 <= -eye(n)
P >= eye(n)

cvx_end

CVX Command

(i)

(iii)

(ii)

The following conditions are equivalent:
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• Singular Matrix Type Control Problem

• Gain Scheduled Control Problem

Riccati-based Solution

LMI-based Solution

• Control Problem (See 5th doc.)

There is NO assumption about general plants

Beyond Riccati-based        Control

Assumptions Full rank on the imaginary axis

Inequalities

• Multi-objective Control Problem

• Matrix Polytope Type Control Problem

Equalities

• Quadratic Stabilization Problem

• Norm Bounded Uncertainty Type Problem
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Robust Stability Condition

Algebraic Riccati Equation(ii)
(i) is stable and

Riccati Inequality(iii)

Stability of        -norm

LMI(iv)

Stable LTI system

Given            , the following conditions are equivalent. 



13

LMI(v)

LMI(v)’

LMI(iv)

Robust Stability Condition (Cont’d)

Stable LTI system

Given            , the following conditions are equivalent. 

Schur Complement
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LMI formulation: Structured Singular Value

Upper Bound

Stability

[SP05, p. 478]

minimize
subject to

Then is an upper bound for

Quasiconvex optimization problem: 
Generalized eigenvalue problem

If     varies monotomically, the feasible regions of               are nested
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LMI formulation: via Main Loop Theorem
State-space performance test

is stable

In this case

Consider (without loss of generality) finding      such that
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LMI formulation: Bounded Real Lemma
State-space performance test

(take                )

Bounded Real Lemma
is stable

s.t.
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LMI formulation: Bounded Real Lemma
Discrete-time

Continuous-time

is stable

s.t.

Discrete-time Lyapunov condition

is stable
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State feedback        control

: stabilizable

and

Continuous-time
minimize
subject to

,

gives stable and
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State feedback        control: CVX

P = ss(A, [Bw, Bu], [Cz; eye(n,n)], [Dzw, Dzu; zeros(n,nw+nu)]) ;
cvx_begin sdp
variable Q(n,n) symmetric;
variable F(nu,n);
variable eta;
minimize eta ;
subject to:

Q > 0 ;
[ Q*A’ + F’*Bu’ + A*Q + Bu*F, Bw,                Q*Ce’ + F’*Dzu’ ;
Bw’,                                      -eye(nw,nw),  Dzw’ ;
Cz*Q + Dzu*F,                     Dzw,              -eta*eye(nz,nz)] < 0 ;

cvx_end
K = F*inv(Q) ;
Aclp = A + Bu*K ;
Disp( eig(Aclp) ) ;  % always check that it really is a good controller.

CVX Command

minimize
subject to
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Output feedback        control

: stabilizable

and

: detectable

Continuous-time
is stable
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Output feedback        control
Partition      as:

and

Define an inertia-preserving transform via:
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Output feedback        control
minimize

subject to

gives stable and
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Output feedback        control: CVX

P = ss(A, [Bw, Bu], [Cz; Cy], [Dzw, Dzu; Dyw, zeros(ny,nu)]) ;

cvx_begin sdp
variable X(n,n) symmetric;
variable Y(n,n) symmetric;
variable Ah(n,n);
variable Bh(n,ny);
variable Ch(nu,n);
variable eta;

minimize eta ;
subject to:

[ X,            eye(n,n) ; 
eye(n,n), Y            ] > 0 ;

[ A*X + Bu*Ch + X*A’ + Ch’*Bu’, A+Ah’, Bw, X*Ce’ + Ch’*Dzu’ ;
A’+Ah,                                                   Y*A + A’*Y + Bh*Cy + Cy’*Bh’, Y*Bw + Bh*Dyw, Ce’ ; 
Bw’,                                                       Bw’+Y + Dyw’*Bh’,                   -eye(nw,nw),       Dzw’ ;
Cz*X + Dzu*Ch,                                    Cz,                                            Dzw,    -eta*eye(nz,nz)] < 0 ;

cvx_end

CVX Command

Same as hinfsyn

[Khi,CLhi,ghi,hiinfo] = hinfsyn(P,ny,nu,’Method’,’lmi’);
MATLAB Command



24

control

Theorem
is stable

s.t.

Discrete-timeContinuous-time
s.t. s.t.
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State feedback        control

: stabilizable

and

Continuous-time is stable and iff
and s.t.
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control: LQG Problem

: stabilizable

and

LQG Objective:

and
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Output feedback       control

: stabilizable

and

: detectable

Continuous-time is stable and iff

s.t.

, and
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Output feedback        control
minimize

subject to

gives stable and
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control: CVX

cvx_begin sdp
variable X(n,n) symmetric;
variable Y(n,n) symmetric;
variable W(nz,nz) symmetric;
variable Ah(n,n);
variable Bh(n,ny);
variable Ch(nu,n);
variable gamma;

minimize gamma ;
subject to:

trace(W) < gamma ;
[ W,                       Cz*X+Dzu*Ch,  Cz ; 
X*Cz’+Ch’*Dzu’, X,                      eye(n,n) ;
Cz’,                     eye(n,n),           Y            ] > 0 ;

[ A*X + Bu*Ch + X*A’ + Ch’*Bu’, A+Ah’,                                      Bw ;
A’+Ah,                                       Y*A + A’*Y + Bh*Cy + Cy’*Bh’, Y*Bw + Bh*Dyw ; 
Bw’,                                           Bw’+Y + Dyw’*Bh’,                   -eye(nw,nw) ] < 0 ;

cvx_end

CVX Command

Same as h2syn

[K2,CL2,g2,hiinfo] = hinfsyn(P,ny,nu);
MATLAB Command
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Design Problem
Bounding error amplitudes for bounded amplitude inputs

Use impulse response matrices and a Youla parametrization to 
set up the design problem:

Robust problems can also be set up and solved as (large) 
optimization problems



31

Pole Region Constraints(    -Stability)
Definitions

,
: a region of the complex plane

[Ex.] [Ex.] [Ex.]

Re

Im

Re

Im

Re

Im
Conic sector
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Pole Region Constraints: LMI conditions
Definitions

,

Theorem
s.t.

[Ex.] All closed loop poles have real part less than

Re

Im

s.t.



33

Multi-objective Analysis

Control Problem

Control Problem

Pole Region Constraints
s.t.

s.t.

s.t.
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Multi-objective Design

Control Problem

Control Problem

Pole Region Constraints
s.t.

s.t.

s.t.

For Synthesis

Conservative Design
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Schur Complement

(i)

(iii)
(ii)

The following conditions are equivalent:

(i) ⇔ (iii)

(i) ⇔ (ii)
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LMI Formulation: Root mean square(RMS) Gain

and      s.t.

RMS gain of the stable LTI system is the minimum value 
of the solution     satisfying the following statement.

RMS gain is the value that the average size for the sustainable signal

Covariance matrix

Power spectrum density
If          satisfies ergodicity, i.e., a stationary stochastic signal, 
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Relaxations for Structured Uncertainty

(Quadratic) StabilityStability

Fundamental Stability (NS)
s.t. s.t.and

s.t.and s.t.and



The matrix     is Hurwitz (stable) and
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Strictly Bounded Real Lemma

(i) Stability of        -norm

LMI(ii)

Suppose .
Then the following are equivalent conditions.

There exists a symmetric matrix                          such that

KYP Lemma(iii)
and there exist symmetric 

matrices           and matrices           such that

V.M. Popov

R.E.Kalman L. Yakubovich

A. Hurwitz
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Single Constraint Quadratic Optimization
Original SDP Problem

minimize
subject to

minimize
subject to

Not a convex optimization problem

A linear objective function, 
A linear inequality constraint and a nonlinear equality constraint

Relaxation/ Dual problem of the SDP
minimize
subject to
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S-procedure (Yakubovich’s S-lemma)

Sufficient Condition is clear.

Definitions

where and

where and

if and only if

s.t.

If there exists            satisfying (S), then given             ,
Note:

(S)



where                                                 . 
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Generalized S-Procedure
We often encounter problems with constraints of the form

satisfying
(S1)
(S2)

A potentially conservative but useful algebraic sufficient condition 
for (S1) and (S2) is the existence of positive-semidefinite functions

such that

for all (S3)

for all

The set-containment constraint

For the case in which                          are quadratic functions, the sufficient 
condition in (S3) is known as the S-procedure relaxation for (S1) and (S2).
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LMI Programming: YALMIP

http://users.isy.liu.se/johanl/yalmip/

YALMIP: Yet Another LMI Parser

Johan Löfberg
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SDP Solvers in YALMIP
Linear Programming

(free) CDD, CLP, GLPK, LPSOLVE, QSOPT, SCIP, 
(commercial) CPLEX, GUROBI, LINPROG, MOSEK, XPRESS

Mixed Integer Linear Programming
(free) CBC, GLPK, LPSOLVE, SCIP, 
(commercial) CPLEX, GUROBI, MOSEK, XPRESS

Quadratic Programming
(free) BPMPD, CLP, OOQP, QPC, qpOASES, quadprogBB, 
(commercial) CPLEX, GUROBI, MOSEK, NAG, QUADPROG, XPRESS

Mixed Integer Quadratic Programming
(commercial) CPLEX, GUROBI, MOSEK, XPRESS

Second-order Cone Programming
(free) ECOS, SDPT3, SeDuMi (commercial) CPLEX, GUROBI, MOSEK

Mixed Integer Second-order Cone Programming
(commercial) CPLEX, GUROBI, MOSEK

Semidefinite Programming
(free) CSDP, DSDP, LOGDETPPA, PENLAB, SDPA, SDPLR, SDPT3, 
SDPNAL, SeDuMi (commercial) LMILAB, MOSEK, PENBMI, PENSDP

General Nonlinear Programming and other solvers


