- **Robust and Optimal Control, Spring 2015**
 - Instructor: Prof. Masayuki Fujita (S5-303B)
 - D. Linear Matrix Inequality
 - **D.1** Convex Optimization
 - D.2 Linear Matrix Inequality(LMI)
 - D.3 Control Design and LMI Formulation

Convex Optimization Problems

minimize	$f_0(x)$		(f_0 : convex)
subject to	$f_i(x) \le 0 ,$	$i=1,\cdots,m$	$(f_i: convex)$
	Ax = b		(affine)

Note: A problem is quasiconvex if f_0 is quasiconvex and f_1, \dots, f_m are convex.

The feasible set of a convex (or quasiconvex) optimization problem is convex.

Quasi-convex function

Semidefinite Programming Problem (SDP)

minimize	$c^T x$	
subject to	$x_1F_1 + x_2F_2 + \dots + x_nF_n + G \preceq 0$	(LMI)
	Ax = b	

where
$$F_i, G \in \mathbb{S}^k$$

 \mathbb{S}^k : a set of symmetric matrix (size k)
 $P \preceq 0$: a symmetric matrix $P \in \mathbb{R}^{n \times n}$ is a *negative*
semidefinite if the following inequality holds.
 $x^T P x \ge 0, \ \forall x \in \mathbb{R}^n$

Note: Multiple constraints are trivially combined into a single (larger) constraint,

$$\begin{cases} x_1 F_1 + x_2 F_2 + \dots + x_n F_n + G \leq 0 \\ x_1 H_1 + x_2 H_2 + \dots + x_n H_n + M \leq 0 \end{cases}$$

iff $x_1 \begin{bmatrix} F_1 & 0 \\ 0 & H_1 \end{bmatrix} + x_2 \begin{bmatrix} F_2 & 0 \\ 0 & H_2 \end{bmatrix} + \dots + x_n \begin{bmatrix} F_n & 0 \\ 0 & H_n \end{bmatrix} + \begin{bmatrix} G & 0 \\ 0 & M \end{bmatrix} \leq 0$

Linear Matrix Inequality (LMI)

Formulation

$$F(x) := F_0 + x_1 F_1 + \dots + x_m F_m < 0$$

$$F_0, F_i \ (i = 1, \dots, m) \in \mathbb{R}^{n \times n} : \text{Constant Symmetric Matrices}$$

$$x := [x_1, \dots, x_m]^T \in \mathbb{R}^m : \text{Variables}$$

Set of x satisfying F(x) < 0 is convex, i.e.,

for every x_1, x_2 satisfying $F(x_1) < 0, F(x_2) < 0$, $\forall \alpha \in [0, 1]$ $F(\alpha x_1 + (1 - \alpha)x_2) = \alpha F(x_1) + (1 - \alpha)F(x_2) < 0$

Convex Optimization Problem

General Formulation

$$\mathcal{G}(X_1, X_2, \cdots, X_n) < 0$$

$$\mathcal{G}(\cdot) : \text{Symmetric Matrix}, X_i \ (i = 1, \cdots, m) : \text{Affine Functions}$$

Ex. $AX + XA^T < 0$

LMI Numerical Optimization Problems

Fact Set of x satisfying LMI condition F(x) > 0 a convex set. $\begin{cases}
\text{Suppose any } x, y \text{ satisfy } F(x) > 0, F(y) > 0. \text{ Then} \\
F(\alpha x + (1 - \alpha)y) \le \alpha F(x) + (1 - \alpha)F(y) < 0 \, \forall \alpha \in [0, 1]
\end{cases}$

[Ex.] Convex Feasibility Problem(CFP)

find
$$x \in \mathbb{R}^m$$
 s.t. $F(x) > 0$

[Ex.] Convex Optimization Problem(COP)

$$\min_{x \in \mathbb{R}^m} \quad c'x \quad \text{s.t.} \quad F(x) > 0$$

[Ex.] Quasi-convex Optimization Problem(QOP)

$$\min_{x \in \mathbb{R}^m, \lambda > 0} \quad \lambda \qquad \text{s.t. } \lambda A(x) > B(x) , A(x) > 0 \text{ and } C(x) > 0$$

F(x), A(x), B(x), C(x) : Affine functions $c \in \mathbb{R}^m$

LMI Numerical Optimization Problems

[Ex.] Scaled H_{∞} Norm Condition

For a internally stable system
$$G(s) = C(sI-A)^{-1}B + D$$
 ,
$$\|S^{-1/2}GS^{1/2}\|_{\infty} < \gamma$$

where $\,\gamma>0\,$ and $\,S\in\mathcal{D}\,$, which is a structured sym. matrix set

[CFP] find X such that $F(x) := \begin{bmatrix} AX + XA' & XC' \\ CX & -\gamma^2 S \end{bmatrix} + \begin{bmatrix} B \\ D \end{bmatrix} S \begin{bmatrix} B \\ D \end{bmatrix}' < 0 \quad (*)$ [COP] min $c'x = \gamma^2$ subject to (*) over X and $\gamma^2 > 0$ [Ex.] $X = \begin{bmatrix} x_{11} & x_{12} \\ x_{12} & x_{22} \end{bmatrix} \longrightarrow \begin{array}{c} x = \begin{bmatrix} \gamma^2 & x_{11} & x_{12} \\ x_{12} & x_{22} \end{bmatrix}'$ $c = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}'$

[QOP] min $\lambda := \gamma^2$ subject to (*) over X, $S \in D$ and $\gamma^2 > 0$ Standard Solvers: SDP, Projection Algorithm(interior-point method)

Semidefinite Programming Problem (SDP)

[Ex.] Matrix norm minimization (Maximum singular value)

minimize
$$||A(x)||_2 = \sqrt{\rho(A(x)^T A(x))}$$

where $A(x)$ is an LMI
 $A(x) = A_0 + x_1 A_1 + x_2 A_2 + \dots + x_n A_n$

The equivalent SDP

minimize tsubject to $\begin{bmatrix} tI & A(x) \\ A(x)^T & tI \end{bmatrix} \succeq 0$

Decision variables: t, x

 $P \succeq 0$: a positive semidefinite

Note: The constraint equivalence follows from a Schur complement argument

$$\begin{aligned} \|A(x)\|_2 &\leq t \quad \Leftrightarrow \quad A(x)^T A(x) \preceq t^2 I, \ t \geq 0 \\ &\Leftrightarrow \quad \begin{bmatrix} tI & A(x) \\ A(x)^T & tI \end{bmatrix} \succeq 0 \end{aligned}$$

LMI Programming: CVX

MATLAB Software for Disciplined Convex Programming

Michael C. Grant

Stephen P. Boyd

http://cvxr.com/cvx/

LMI Programming: CVX

[Ex.] Proving the stability of a system:

$$\frac{dx(t)}{dt} = Ax(t) \qquad (*)$$

CVX Command

cvx_begin sdp variable P(n,n) symmetric A'*P + P*A <= -eye(n) P >= eye(n) cvx_end

9

The following conditions are equivalent:

(i) (*) is stable, i.e.,
$$\operatorname{Re}[\lambda(A)] < 0 \ \forall \lambda$$

(ii) $\exists P = P^T \succ 0 \text{ s.t. } A^T P + PA \prec 0$
(iii) $\exists X = X^T \succ 0 \text{ s.t. } XA^T + AX \prec 0$
(iv) $\exists P = P^T \succeq I \text{ s.t. } A^T P + PA \preceq -I$
(v) $\exists X = X^T \succeq I \text{ s.t. } XA^T + AX \preceq -I$

A candidate of Lyapunov function $V(x) = x(t)^T P x(t)$, $P = P^T$ Stability Condition: $\dot{V}(x) = x^T (PA + A^T P) x < 0 \ \forall x \neq 0$

Note: cvx_status is a string returning the status of the optimization

LMI Programming: CVX

[Ex.] Proving the stability of two systems,

$$\frac{dx(t)}{dt} = A_1 x(t) \quad \text{and} \quad \frac{dx(t)}{dt} = A_2 x(t)$$

CVX Command

cvx_begin sdp variable P(n,n) symmetric A1'*P + P*A1 <= -eye(n) A2'*P + P*A2 <= -eye(n) P >= eye(n) cvx_end

The following conditions are equivalent:

(i) (*) is stable for
$$A(t) = \theta_1(t)A_1 + \theta_2(t)A_2, \ \theta_i(t) \ge 0$$

(ii) $\exists P = P^T \succ 0 \text{ s.t. } A_1^T P + PA_1 \prec 0$
and $A_2^T P + PA_2 \prec 0$
(iii) $\exists P = P^T \succeq I \text{ s.t. } A_1^T P + PA_1 \preceq -I$
and $A_2^T P + PA_2 \preceq -I$

The stability can be proven with a single Lyapunov function, $V(x) = x(t)^T P x(t)$

Beyond Riccati-based H_{∞} Control

Riccati-based Solution

- Norm Bounded Uncertainty Type Problem
- H_{∞}/H_2 Control Problem (See 5th doc.)

Assumptions Full rank on the imaginary axis

LMI-based Solution

- Matrix Polytope Type Control Problem
- Singular Matrix Type Control Problem
- Quadratic Stabilization Problem
- Gain Scheduled Control Problem
- Multi-objective Control Problem There is NO assumption about general plants

$$\begin{bmatrix} A^T X + XA + BB^T & XC^T + BD^T \\ CX + DB^T & DD^T - \gamma^2 I \end{bmatrix} < 0$$

Inequalities 11

Equalities

Robust Stability Condition

Stable LTI system
$$\begin{cases} \dot{x} = Ax + Bu\\ y = Cx + Du \end{cases}$$
$$G(s) = C(sI - A)^{-1}B + D$$

Given $\gamma > 0$, the following conditions are equivalent.

- (i) Stability of H_{∞} -norm A is stable and $||G||_{\infty} < \gamma$
- (ii) Algebraic Riccati Equation

 $\exists X = X^{T} \ge 0, \ R := \gamma^{2}I - DD^{T} > 0$ $AX + XA^{T} + (XC^{T} + BD^{T})R^{-1}(XC^{T} + BD^{T})^{T} + BB^{T} = 0$ (iii) Riccati Inequality $\exists X = X^{T} > 0, \ R := \gamma^{2}I - DD^{T} > 0$

 $AX + XA^T + (XC^T + BD^T)R^{-1}(XC^T + BD^T)^T + BB^T < 0$

(iv) LMI $\exists X = X^T > 0, \begin{bmatrix} A^T X + XA + BB^T & XC^T + BD^T \\ CX + DB^T & DD^T - \gamma^2 I \end{bmatrix} < 0$

Robust Stability Condition (Cont'd)

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \\ G(s) = C(sI - A)^{-1}B + D \\ \text{Given } \gamma > 0 \text{ , the following conditions are equivalent.} \end{cases}$$
(iv) LMI $\exists X = X^T > 0, \begin{bmatrix} A^TX + XA + BB^T & XC^T + BD^T \\ CX + DB^T & DD^T - \gamma^2I \end{bmatrix} < 0$
(v) LMI $\exists X = X^T > 0, \begin{bmatrix} AX + XA^T & XC^T & B \\ CX & -\gamma I & D \\ B^T & D^T & -\gamma I \end{bmatrix} < 0$
(v)' LMI $\exists P = P^T > 0, \begin{bmatrix} A^TP + PA & PB & C^T \\ B^TP & -\gamma I & D^T \\ C & D & -\gamma I \end{bmatrix} < 0$

Schur Complement

LMI formulation: Structured Singular Value [SP05, p. 478]

Upper Bound $\mu_{\Delta}(M) \leq \min_{D \in \mathcal{D}} \bar{\sigma}(DMD^{-1}) < \gamma$ $\Leftrightarrow \gamma^{2}I - (DMD^{-1})^{H}(DMD^{-1}) \succ 0$ $\Leftrightarrow \gamma^{2}I - D^{-1}M^{H}D^{2}MD^{-1} \succ 0$ $\Leftrightarrow \gamma^{2}D^{2} - M^{H}D^{2}M \succ 0 \Leftrightarrow \gamma^{2}D - M^{H}DM \succ 0$

If γ varies monotomically, the feasible regions of $D \in \mathcal{D}$ are nested

 $\begin{array}{ll} \underset{\eta, D \in \mathcal{D}}{\text{minimize}} & \eta\\ \text{subject to} & \eta D - M^H DM \succ 0 \end{array}$

Quasiconvex optimization problem: Generalized eigenvalue problem

Then $\gamma = \sqrt{\eta^{\text{opt}}}$ is an upper bound for $\mu_{\Delta}(M)$

14

LMI formulation: via Main Loop Theorem

State-space performance test $G = \begin{vmatrix} A & B \\ \hline C & D \end{vmatrix} \quad \begin{array}{c} \dot{x} = Ax + Bu \\ y = Cx + Du \end{aligned}$ w \mathcal{Z} $y = F_u(G, z^{-1}I)u$ \mathcal{U} \boldsymbol{y} $\mu_{\Delta}(G) < 1 \quad \Leftrightarrow \quad \left\{ \begin{array}{l} F_u(G, z^{-1}I) \text{ is stable} \\ \|F_u(G, z^{-1}I)\|_{\infty} < 1 \end{array} \right.$ $\Delta = \{ \operatorname{diag}(\delta_1 I_{nx}, \Delta_2) | \delta_1 \in \mathcal{C}, \Delta_2 \in \mathcal{C}^{nu \times ny} \}$ In this case $\mu_{\Delta}(G) = \inf_{D \in \mathcal{D}} \bar{\sigma}(DGD^{-1})$ $\mathcal{D} = \left\{ \left| \begin{array}{cc} D_1 & 0 \\ 0 & d_2 I \end{array} \right| \left| D_1 = D_1^H \succ 0, d_2 > 0 \right\} \right.$ Consider (without loss of generality) finding D_1 such that

$$\bar{\sigma} \left(\begin{bmatrix} D_1 & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} D_1^{-1} & 0 \\ 0 & I \end{bmatrix} \right) < 1$$

LMI formulation: Bounded Real Lemma

State-space performance test

$$\begin{pmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix}^T \begin{bmatrix} \mathbf{X} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix}^T - \begin{bmatrix} \mathbf{X} & 0 \\ 0 & I \end{bmatrix} \end{pmatrix} \prec 0$$
$$\mathbf{X} = \mathbf{X}^H \succ 0 \quad \text{(take } \mathbf{X} = D_1^2 \text{)}$$

Bounded Real Lemma

$$\begin{cases} F_u(G, z^{-1}I) \text{ is stable} \\ \|F_u(G, z^{-1}I)\|_{\mathcal{L}_2} < 1 \end{cases}$$
$$\Leftrightarrow \exists X = X^H \succ 0 \quad \text{s.t.} \quad \begin{bmatrix} -X & 0 & A^T X & C^T \\ 0 & -I & B^T X & D^T \\ 0 & -I & B^T X & D^T \\ XA & XB & -X & 0 \\ C & D & 0 & -I \end{bmatrix} \prec 0$$

LMI formulation: Bounded Real Lemma

 \Leftrightarrow

Discrete-time

$$\begin{cases} F_u(G, z^{-1}I) \text{ is stable} \\ \|F_u(G, z^{-1}I)\|_{\infty} < \gamma \end{cases}$$

$$\exists Y = Y^{H} \succ 0 \quad \text{s.t.}$$

$$\begin{bmatrix} Y & AY & B & 0 \\ YA^{T} & Y & 0 & YC^{T} \\ B^{T} & 0 & I & D^{T} \\ 0 & CY & D & \gamma^{2}I \end{bmatrix} \succ 0$$

$$\begin{bmatrix} Y & AY \\ YA^T & Y \end{bmatrix} \succ 0$$

 $\Leftrightarrow \qquad AYA^T - Y \prec 0$ Discrete-time Lyapunov condition

Continuous-time

$$\begin{cases} F_u(G, z^{-1}I) \text{ is stable} \\ \|F_u(G, z^{-1}I)\|_{\infty} < \gamma \end{cases}$$

$$\exists P = P^{H} \succ 0$$

$$\Leftrightarrow \begin{bmatrix} A^{T}P + PA & PB & C^{T} \\ B^{T}P & -I & D^{T} \\ C & D & -\gamma^{2}I \end{bmatrix} \prec 0$$

$$\exists Q = P^{-1}$$

$$\Leftrightarrow \begin{bmatrix} QA^{T} + AQ & B & QC^{T} \\ B^{T} & -I & D^{T} \\ CQ & D & -\gamma^{2}I \end{bmatrix} \prec 0$$

17

State feedback H_{∞} control

$$G = \begin{bmatrix} A & B_w & B_u \\ \hline C_z & D_{zw} & D_{zu} \\ I & 0 & 0 \end{bmatrix} \quad (A, B_u) : \text{stabilizable}$$

$$\begin{bmatrix} z \\ y \end{bmatrix} = G(s) \begin{bmatrix} w \\ u \end{bmatrix} \text{ and } u = Kx = Ky$$
$$F_l(G, K) = \begin{bmatrix} \frac{A + B_u K}{C_z + D_{zu} K} & B_w \\ D_{zw} \end{bmatrix}$$

Continuous-time
$$F = KQ$$
, $\eta = \gamma^2$

$$\begin{array}{ll} \underset{\eta,Q,F}{\text{minimize}} & \eta \\ \text{subject to} & Q = Q^T \prec 0 \\ \begin{bmatrix} QA^T + F^T B_u^T + AQ + B_u F & B_w & QC_z^T + F^T D_{zu}^T \\ & B_w^T & -I & D_{zw}^T \\ & C_z Q + D_{zu} F & D_{zw} & -\eta I \end{bmatrix} \prec 0 \end{array}$$

 $K = FQ^{-1}$ gives $F_l(G, K)$ stable and $||F_l(G, K)||_{\infty} \leq \sqrt{\eta}$

z

State feedback H_{∞} control: CVX

minimize	η			
subject to	$Q = Q^T \prec 0$			
	$\left[\mathbf{Q}A^T + \mathbf{F}^T B_u^T + A\mathbf{Q} + B_u \mathbf{F} \right]$	B_w	$QC_z^T + F^T D_{zu}^T$	
	\tilde{B}_w^T	-I	D_{zw}^T	$\prec 0$
	$ C_z Q + D_{zu} F $	D_{zw}	$-\eta I$	

CVX Command

P = ss(A, [Bw, Bu], [Cz; eye(n,n)], [Dzw, Dzu; zeros(n,nw+nu)]);cvx_begin sdp variable Q(n,n) symmetric; variable F(nu,n); variable eta; minimize eta; subject to: Q > 0 ; [Q*A' + F'*Bu' + A*Q + Bu*F, Bw, Q*Ce' + F'*Dzu'; Bw', -eye(nw,nw), Dzw'; Cz*Q + Dzu*F, Dzw, $-eta^*eye(nz,nz)] < 0$; cvx end $K = F^*inv(Q)$; $Aclp = A + Bu^*K$; Disp(eig(Aclp)); % always check that it really is a good controller.

Output feedback H_{∞} control

w

Continuous-time

$$\begin{cases} F_u(G,K) \text{ is stable} \\ \|F_u(G,K)\|_{\infty} < \gamma \end{cases} \qquad \Leftrightarrow \begin{bmatrix} A_{cl}^T P + PA_{cl} & PB_{cl} & C_{cl}^T \\ B_{cl}^T P & -I & D_{cl}^T \\ C_{cl} & D_{cl} & -\gamma^2 I \end{bmatrix} \prec 0$$

z

y

Output feedback H_{∞} control

Partition P as:

$$P = \begin{bmatrix} \mathbf{Y} & N \\ N^T & * \end{bmatrix} \text{ and } P^{-1} = \begin{bmatrix} \mathbf{X} & M \\ M^T & * \end{bmatrix}$$
$$\hat{\mathbf{A}} = NA_k M^T + NB_k C_y \mathbf{X} + \mathbf{Y} B_u C_k M^T + \mathbf{Y} A \mathbf{X}$$
$$\hat{\mathbf{B}} = NB_k$$
$$\hat{\mathbf{C}} = C_k M^T$$

Define an inertia-preserving transform via: $T = \begin{bmatrix} X & I \\ M^T & 0 \end{bmatrix}$

$$T^{T}PA_{cl}T = \begin{bmatrix} AX + B_{u}\hat{C} & A \\ \hat{A} & YA + \hat{B}C_{y} \end{bmatrix}$$
$$T^{T}PB_{cl} = \begin{bmatrix} B_{w} \\ YB_{w} + \hat{B}D_{yw} \end{bmatrix}$$
$$C_{cl}T = \begin{bmatrix} C_{z}X + D_{zu}\hat{C} & C_{z} \end{bmatrix}$$
$$T^{T}PT = \begin{bmatrix} X & I \\ I & Y \end{bmatrix}$$

Output feedback H_{∞} control

$$\begin{array}{c} \underset{\eta, X, Y, \hat{A}, \hat{B}, \hat{C}}{\text{subject to}} & \eta \\ \underset{I}{\left[\begin{array}{c} X & I \\ I & Y \end{array} \right]} \succ 0 \\ \\ & \left[\begin{array}{c} T^{T} & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{array} \right] \left[\begin{array}{c} A_{cl}^{T}P + PA_{cl} & PB_{cl} & C_{cl}^{T} \\ B_{cl}^{T}P & -I & D_{cl}^{T} \\ C_{cl} & D_{cl} & -\gamma^{2}I \end{array} \right] \left[\begin{array}{c} T & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{array} \right] \prec 0 \\ \\ & \Leftrightarrow \begin{bmatrix} AX + B_{u}\hat{C} + XA^{T} + \hat{C}^{T}B_{u}^{T} & A + \hat{A}^{T} & B_{w} & XC_{z}^{T} + \hat{C}^{T}D_{zu}^{T} \\ A^{T} + \hat{A} & YA + A^{T}Y + \hat{B}C_{y} + C_{y}^{T}\hat{B}^{T} & YB_{w} + \hat{B}D_{yw} & C_{z}^{T} \\ B_{w}^{T} & B_{w}^{T} & B_{w}^{T}Y + D_{zw}^{T}\hat{B}^{T} & -I & D_{zw}^{T} \\ C_{z}X + D_{zu}\hat{C} & C_{z} & D_{zw} & -\eta I \end{bmatrix} \prec 0 \end{array}$$

 $PP^{-1} = I \implies NM^T = I - YX$ $K(s) = \left[\frac{A_k \mid B_k}{C_k \mid 0}\right] \text{ gives } F_l(G, K) \text{ stable and } \|F_l(G, K)\|_{\infty} \le \sqrt{\eta}$

Output feedback H_{∞} control: CVX

CVX Command P = ss(A, [Bw, Bu], [Cz; Cy], [Dzw, Dzu; Dyw, zeros(ny,nu)]); cvx_begin sdp variable X(n,n) symmetric;

```
variable Y(n,n) symmetric;
 variable Ah(n,n);
 variable Bh(n,ny);
 variable Ch(nu,n);
 variable eta:
 minimize eta;
 subject to:
            eye(n,n);
  [X.
   eye(n,n), Y = ] > 0;
  [ A*X + Bu*Ch + X*A' + Ch'*Bu', A+Ah', Bw, X*Ce' + Ch'*Dzu';
                                       Y*A + A'*Y + Bh*Cy + Cy'*Bh', Y*Bw + Bh*Dyw, Ce';
   A'+Ah,
                                       Bw'+Y + Dyw'*Bh',
                                                                    -eye(nw,nw), Dzw';
   Bw',
   Cz^*X + Dzu^*Ch,
                                       Cz,
                                                                    Dzw, -eta^*eye(nz,nz)] < 0;
cvx_end
```

Same as

MATLAB Command

[Khi,CLhi,ghi,hiinfo] = hinfsyn(P,ny,nu,'Method','Imi');

H_2 control

$$G = \begin{bmatrix} A & B \\ C & 0 \end{bmatrix} \quad \|G(s)\|_{\mathcal{L}_2} = \sqrt{\frac{1}{2\pi} \int_{-\infty}^{\infty} \operatorname{Tr}(G(j\omega)G^*(j\omega))d\omega}$$

Theorem

$$\exists X = X^T \succ 0 \text{ s.t.}$$

$$\begin{cases} G(s) \text{ is stable} \\ \|G(s)\|_{\mathcal{H}_2}^2 < \gamma \end{cases} \Leftrightarrow \quad \begin{cases} \operatorname{Tr}(CXC^T) < \gamma \\ AX + XA^T + BB^T \prec 0 \end{cases}$$

$$\begin{cases} AX + XA^T + BB^T \prec 0 \end{cases}$$

Continuous-time

$$\exists \mathbf{X} = \mathbf{X}^T \succ 0 \text{ s.t.} \\ \begin{cases} A\mathbf{X} + \mathbf{X}A^T + BB^T \prec 0 \\ \begin{bmatrix} W & CX \\ XC^T & X \end{bmatrix} \succ 0 \\ \operatorname{Tr}(W) < \gamma \end{cases}$$

Discrete-time

 $\exists X = X^T \succ 0$ s.t.

$$\begin{cases} \begin{bmatrix} X & AX & B \\ XA^T & X & 0 \\ B^T & 0 & I \end{bmatrix} \succ 0 \\ \begin{bmatrix} W & CX \\ XC^T & X \end{bmatrix} \succ 0 \\ \operatorname{Tr}(W) < \gamma \end{cases}$$

State feedback H_2 control

$$G = \begin{bmatrix} A & B_w & B_u \\ \hline C_z & 0 & D_{zu} \\ I & 0 & 0 \end{bmatrix} \quad (A, B_u) : \text{stabilizable}$$

$$\begin{bmatrix} z \\ y \end{bmatrix} = G(s) \begin{bmatrix} w \\ u \end{bmatrix} \text{ and } u = Kx = Ky$$
$$F_l(G, K) = \begin{bmatrix} A + B_u K & B_w \\ C_z + D_{zu} K & 0 \end{bmatrix}$$

Continuous-time G(s) is stable and $||G(s)||_{\mathcal{L}_2} < \gamma$ iff $\exists X = X^T \succ 0$ and F = KX s.t.

$$\begin{cases} AX + B_u F + X A^T + F^T B_u^T + B_w B_w^T \prec 0 \\ \begin{bmatrix} W & C_z X + D_{zu} F \\ X C_z^T + F^T D_{zu}^T & X \end{bmatrix} \succ 0 \\ Tr(W) < \gamma \end{cases}$$

 $\begin{array}{c} & & \\$

w

H_2 control: LQG Problem

$$G = \begin{bmatrix} A & B_w & B_u \\ \hline C_z & 0 & D_{zu} \\ I & 0 & 0 \end{bmatrix} \quad (A, B_u) : \text{stabilizable}$$

 $\begin{bmatrix} z \\ y \end{bmatrix} = G(s) \begin{bmatrix} w \\ u \end{bmatrix}$ and u = Kx = Ky

LQG Objective:
$$J = \sum_{k=0}^{\infty} x(k)^T Q x(k) + u(k)^T R u(k)$$

$$C_{z} = \begin{bmatrix} Q^{1/2} \\ 0 \end{bmatrix} \text{ and } D_{zu} = \begin{bmatrix} 0 \\ R^{1/2} \end{bmatrix}$$
$$e(k) = \begin{bmatrix} Q^{1/2}x(k) \\ R^{1/2}u(k) \end{bmatrix}$$
$$e(k)^{T}e(k) = x(k)^{T}Qx(k) + u(k)^{T}Ru(k)$$
$$\|e(k)\|_{2}^{2} = \sum_{k=0}^{\infty} x(k)^{T}Qx(k) + u(k)^{T}Ru(k)$$

Output feedback H_2 control

$$G = \begin{bmatrix} A & B_w & B_u \\ C_z & 0 & D_{zu} \\ D_{yw} & 0 \end{bmatrix} \quad (A, B_u) : \text{stabilizable} \\ (C_y, A) : \text{detectable} \end{bmatrix} u$$
$$\begin{bmatrix} z \\ y \end{bmatrix} = G(s) \begin{bmatrix} w \\ u \end{bmatrix} \text{ and } u = K(s)y = \begin{bmatrix} A_k & B_k \\ C_k & 0 \end{bmatrix} y$$
$$F_l(G, K) = \begin{bmatrix} A & B_u C_k & B_w \\ B_k C_y & A_k & B_k D_{yw} \\ \hline C_z & D_{zu} C_k & 0 \end{bmatrix} = \begin{bmatrix} A_{cl} & B_{cl} \\ \hline C_{cl} & 0 \end{bmatrix}$$

w

G(s)

y

Continuous-time G(s) is stable and $||G(s)||_{\mathcal{L}_2} < \gamma$ iff $\exists P = P^H \succ 0$ s.t. $\begin{bmatrix} A_{cl}^T P + P A_{cl} & P B_{cl} \\ B_{cl}^T P & -I \end{bmatrix} \prec 0$, $\begin{bmatrix} W & C_{cl} \\ C_{cl}^T & P \end{bmatrix} \succ 0$ and $P \succ 0$

Output feedback H_2 control

$$\begin{array}{l} \underset{\gamma,W,X,Y,\hat{A},\hat{B},\hat{C}}{\text{minimize}} & \gamma \\ \text{subject to} & \operatorname{Tr}(W) < \gamma \\ & \begin{bmatrix} T^T & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} A_{cl}^T P + PA_{cl} & PB_{cl} \\ B_{cl}^T P & -I \end{bmatrix} \begin{bmatrix} T & 0 \\ 0 & I \end{bmatrix} \prec 0 \\ & \begin{bmatrix} I & 0 \\ 0 & T^T \end{bmatrix} \begin{bmatrix} W & C_{cl} \\ C_{cl}^T & P \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & T \end{bmatrix} \succ 0 \\ & \Leftrightarrow \begin{bmatrix} AX + B_u\hat{C} + XA^T + \hat{C}^T B_u^T & A + \hat{A}^T & B_w \\ A^T + \hat{A} & YA + A^T Y + \hat{B}C_y + C_y^T \hat{B}^T & YB_w + \hat{B}D_{yw} \\ B_w^T & B_w^T Y + D_{yw}^T \hat{B}^T & -I \end{bmatrix} \prec 0 \\ & \begin{bmatrix} W & C_z X + D_{zu}\hat{C} \\ XC_z^T + \hat{C}^T D_{zu}^T & X \end{bmatrix} \succ 0 \end{array}$$

 $PP^{-1} = I \implies NM^T = I - YX$

 $K(s) = \left\lfloor \frac{A_k \mid B_k}{C_k \mid 0} \right\rfloor \text{ gives } F_l(G, K) \text{ stable and } \|F_l(G, K)\|_{\mathcal{H}_2} \le \sqrt{\eta}$

H_2 control: CVX

CVX Command

```
cvx_begin sdp
 variable X(n,n) symmetric;
 variable Y(n,n) symmetric;
 variable W(nz,nz) symmetric;
 variable Ah(n,n);
 variable Bh(n,ny);
 variable Ch(nu,n);
 variable gamma;
 minimize gamma;
 subject to:
  trace(W) < gamma ;</pre>
  [W,
                   Cz*X+Dzu*Ch, Cz;
   X*Cz'+Ch'*Dzu', X,
                                  eye(n,n);
                                          ] > 0 ;
   Cz', eye(n,n), Y
  [ A*X + Bu*Ch + X*A' + Ch'*Bu', A+Ah',
                                                             Bw:
   A'+Ah.
                                Y^*A + A'^*Y + Bh^*Cy + Cy'^*Bh', Y^*Bw + Bh^*Dyw;
   Bw',
                                 Bw'+Y + Dyw'*Bh',
                                                              -eye(nw,nw) ] < 0;
cvx_end
```

Same as

MATLAB Command

[K2,CL2,g2,hiinfo] = hinfsyn(P,ny,nu);

29

l_1 Design Problem

Bounding error amplitudes for bounded amplitude inputs

$$||M||_{\infty} = \sup_{||x||_{\infty} \le 1} ||Mx||_{\infty} = \max_{1 \le i \le p} \sum_{j=1}^{q} |a_{ij}|$$
$$y = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \end{bmatrix} = Mu = \begin{bmatrix} m_1 & 0 & 0 & \cdots \\ m_2 & m_1 & 0 & \cdots \\ \vdots & \ddots & \ddots & \ddots \end{bmatrix} \begin{bmatrix} u_0 \\ u_1 \\ \vdots \end{bmatrix}$$

Use impulse response matrices and a Youla parametrization to set up the design problem:

$$\min_{Q} \|P + UQV\|_{\infty}$$

Robust problems can also be set up and solved as (large) optimization problems

Pole Region Constraints(D-Stability)

Definitions
$$f_{\mathcal{D}}(z) : \mathcal{C} \to \mathcal{S}^{p \times p}$$
 $f_{\mathcal{D}}(z) = L + zM + z^*M^T$
 $\mathcal{D} = \{z \in \mathcal{C} | f_{\mathcal{D}}(z) \prec 0\}$: a region of the complex plane
 $L = L^T \in \mathbb{R}^{p \times p}$, $M \in \mathbb{R}^{p \times p}$

[Ex.] $\operatorname{Re}(z) < -\alpha$ [Ex.] |z+q| < r

Pole Region Constraints: LMI conditions

Definitions
$$M_{\mathcal{D}}(A, P) = L \otimes P + M \otimes (AP) + M^T \otimes (PA^T)$$

 $A \in \mathbb{R}^{n \times n}, P = P^T \in \mathbb{R}^{n \times n}$

Theorem $\operatorname{eig}(A) \in \mathcal{D}$ $\Leftrightarrow \exists P = P^H \succ 0 \text{ s.t. } M_{\mathcal{D}}(A, P) \prec 0$

[Ex.] All closed loop poles have real part less than $-\alpha$

Multi-objective Analysis

$$F_l(G,K) = \begin{bmatrix} A & B_w & B_v \\ \hline C_z & D_{zw} & D_{zv} \\ C_e & D_{ew} & 0 \end{bmatrix}$$

$$\begin{split} H_{\infty} \text{ Control Problem } & w \to z \\ \left\| \begin{bmatrix} I & 0 \end{bmatrix} F_{l}(G, K) \begin{bmatrix} I \\ 0 \end{bmatrix} \right\|_{\mathcal{L}_{\infty}} \leq \gamma \quad \Leftrightarrow \\ H_{2} \text{ Control Problem } & v \to e \\ \left\| \begin{bmatrix} 0 & I \end{bmatrix} F_{l}(G, K) \begin{bmatrix} 0 \\ I \end{bmatrix} \right\|_{\mathcal{L}_{2}} \leq \beta \quad \Leftrightarrow \end{split}$$

Pole Region Constraints

$$\operatorname{Re}(\operatorname{eig}(A)) < -\alpha$$

 \Leftrightarrow

 $\begin{aligned} \exists P_1 &= P_1^T \succ 0 \text{ s.t.} \\ \begin{bmatrix} A^T P_1 + P_1 A & P_1 B_w & C_z^T \\ B_w^T P_1 & -I & D_{zw}^T \\ C_z & D_{zw} & -\gamma^2 I \end{bmatrix} \prec 0 \\ \exists P_2 &= P_2^T \succ 0 \text{ s.t.} \\ \begin{cases} A P_2 + P_2 A^T + B_v B_v^T \prec 0 \\ \begin{bmatrix} W & C_e P_2 \\ P_2 C_e^T & P_2 \end{bmatrix} \succ 0 & \operatorname{Tr}(W) < \beta \end{aligned}$

$$\exists P_3 = P_3^T \succ 0 \quad \text{s.t.}$$
$$2\alpha P_3 + AP_3 + P_3 A^T \prec 0$$

Multi-objective Design

 $F_l(G,K) = \begin{bmatrix} A & B_w & B_v \\ \hline C_z & D_{zw} & D_{zv} \\ C_e & D_{ew} & 0 \end{bmatrix}$ For Synthesis $P = P_1 = P_2 = P_3$

 H_{∞} Control Problem $w \to z \quad \exists P = P^T \succ 0$ s.t.

$$\left| \begin{bmatrix} I & 0 \end{bmatrix} F_l(G, K) \begin{bmatrix} I \\ 0 \end{bmatrix} \right|_{\mathcal{L}_{\infty}} \leq \gamma \quad \Longleftrightarrow$$

 H_2 Control Problem $v \to e$

$$\left| \begin{bmatrix} 0 & I \end{bmatrix} F_l(G, K) \left[\begin{array}{c} 0 \\ I \end{bmatrix} \right] \right|_{\mathcal{L}_2} \leq \beta \quad \Longleftrightarrow$$

Pole Region Constraints

 $\operatorname{Re}(\operatorname{eig}(A)) < -\alpha \qquad \Leftrightarrow$

Conservative Design

 $\begin{aligned} & = I \quad \neq 0 \quad \text{s.t.} \\ & \begin{bmatrix} A^T P + PA & PB_w & C_z^T \\ B_w^T P & -I & D_{zw}^T \\ C_z & D_{zw} & -\gamma^2 I \end{bmatrix} \prec 0 \\ & \exists P = P^T \succ 0 \quad \text{s.t.} \\ & \begin{cases} AP + PA^T + B_v B_v^T \prec 0 \\ \begin{bmatrix} W & C_e P \\ PC_e^T & P \end{bmatrix} \succ 0 \quad \text{Tr}(W) < \beta \end{aligned}$

$$\exists \mathbf{P} = \mathbf{P}^T \succ 0 \quad \text{s.t.} \\ 2\alpha \mathbf{P} + A\mathbf{P} + \mathbf{P}A^T \prec 0$$

34

Schur Complement

The following conditions are equivalent:

(i)
$$\begin{bmatrix} P & S \\ S^T & Q \end{bmatrix} < 0$$

(ii) $P < 0, \ Q - S^T P^{-1} S < 0$
(iii) $Q < 0, \ P - SQ^{-1}S^T < 0$

(i)
$$\Leftrightarrow$$
 (ii) $\begin{bmatrix} I & 0 \\ -S^T P^{-1} & I \end{bmatrix} \begin{bmatrix} P & S \\ S^T & Q \end{bmatrix} \begin{bmatrix} I & -P^{-1}S \\ 0 & I \end{bmatrix}$

$$= \begin{bmatrix} P & 0 \\ 0 & Q - S^T P^{-1}S \end{bmatrix}$$
(i) \Leftrightarrow (iii) $\begin{bmatrix} I & -SQ^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} P & S \\ S^T & Q \end{bmatrix} \begin{bmatrix} I & 0 \\ -Q^{-1}S^T & I \end{bmatrix}$

$$= \begin{bmatrix} P - SQ^{-1}S^T & 0 \\ 0 & Q \end{bmatrix}$$

LMI Formulation: Root mean square(RMS) Gain

RMS gain of the stable LTI system (A, B, C, D) is the minimum value of the solution γ satisfying the following statement.

$$\exists P = P^T > 0 \text{ and } \gamma \text{ s.t. } \begin{bmatrix} A^T P + PA & PB & C^T \\ B^T P & -\gamma I & D^T \\ C & D & -\gamma I \end{bmatrix} < 0$$

RMS gain is the value that the average size for the sustainable signal

$$\begin{split} \|w\|_{\text{RMS}} &:= \left(\lim_{T \to \infty} \frac{1}{T} \int_0^T \|w(t)\|^2 dt\right)^{1/2} \\ &= \text{Tr}[R_w(0)] = \frac{1}{2\pi} \int_{-\infty}^\infty \text{Tr}[S_w(j\omega)] d\omega \\ \text{Covariance matrix} \qquad R_w(\tau) &:= \lim_{T \to \infty} \frac{1}{T} \int_0^T w(t)w(t+\tau)^T dt \\ \text{Power spectrum density} \qquad S_w(j\omega) &:= \int_{-\infty}^\infty R_w(\tau) e^{-j\omega\tau} d\tau \\ \text{If } w(t) \text{ satisfies ergodicity, i.e., a stationary stochastic signal,} \\ &\|w\|_{\text{RMS}} = E[\|w(t)\|^2] \end{split}$$

Relaxations for Structured Uncertainty

$$G = \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix} \quad \begin{array}{c} x(k+1) = Ax(k) + Bu(k) \\ y(k) = Cx(k) + Du(k) \end{array}$$

Fundamental Stability (NS)

$$\exists P = P^T \succ 0 \quad \text{s.t.} \\ \begin{bmatrix} P & AP \\ PA^T & P \end{bmatrix} \succ 0 \qquad \Leftarrow 1$$

 H_{∞} Stability

$$\exists P = P^T \succ 0 \text{ and } G \text{ s.t.}$$

$$\begin{bmatrix} P & AG & B & 0 \\ G^T A^T & G + G^T - P & 0 & G^T C^T \\ B^T & 0 & I & D^T \\ 0 & CG & D & \gamma^2 I \end{bmatrix} \succ 0$$

 $\exists P = P^T \succ 0$ and G s.t. $\begin{bmatrix} P & AG \\ GA^T & G + G^T - P \end{bmatrix} \succ 0$

 H_2 (Quadratic) Stability $\exists P = P^T \succ 0$ and G s.t.

Strictly Bounded Real Lemma

Suppose $G(s) = C(sI - A)^{-1}B + D$.

Then the following are equivalent conditions.

(i) Stability of H_{∞} -norm

The matrix A is Hurwitz (stable) and $||G(s)||_{\infty} < 1$ A. Hurwitz (ii) LMI

There exists a symmetric matrix $X = X^T > 0$ such that

$$\begin{bmatrix} C^T \\ D^T \end{bmatrix} \begin{bmatrix} C & D \end{bmatrix} + \begin{bmatrix} A^T X + X A & X B \\ B^T X & -I \end{bmatrix} < 0$$

(iii) KYP Lemma

 $I - D^T D > 0$ and there exist symmetric matrices P, Q and matrices L, W such that

R.E.Kalman L. Yakubovich

$$PA + A^{T}P = -C^{T}C - Q - L^{T}L$$
$$PB = -C^{T}D - L^{T}W$$
$$I - D^{T}D = W^{T}W$$
V.M. Popov

38

Single Constraint Quadratic Optimization

Original SDP Problem

minimize
$$x^T A_0 x + 2b_0^T x + c_0$$
 $x \in \mathbb{R}^n$ $A_i \in \mathbb{S}^n$ subject to $x^T A_1 x + 2b_1^T x + c_1 \leq 0$ $b_i \in \mathbb{R}^n$ $c_i \in \mathbb{R}$

Not a convex optimization problem

$$\Rightarrow \begin{vmatrix} \text{minimize} & \operatorname{tr}(A_0 X) + 2b_0^T x + c_0 \\ \text{subject to} & \operatorname{tr}(A_1 X) + 2b_1^T x + c_1 \leq 0 \\ & X = xx^T \end{vmatrix} \qquad \qquad X \in \mathbb{S}^n$$

A linear objective function,

A linear inequality constraint and a nonlinear equality constraint

Relaxation/ Dual problem of the SDP

minimize
$$\operatorname{tr}(A_0 X) + 2b_0^T x + c_0$$

subject to $\operatorname{tr}(A_1 X) + 2b_1^T x + c_1 \leq 0$
 $X \succeq xx^T \iff \begin{bmatrix} X & x \\ x^T & 1 \end{bmatrix} \succeq 0$

S-procedure (Yakubovich's S-lemma)

Definitions
$$\mathcal{E}_{1} = \{x | x^{T} F_{1} x + 2g_{1}^{T} x + h_{1} \leq 0\}$$

where $F_{1} \in \mathbb{S}^{n}, g_{1} \in \mathbb{R}^{n}, h_{1} \in \mathbb{R}$ and $\begin{bmatrix} F_{1} & g_{1} \\ g_{1}^{T} & h_{1} \end{bmatrix} \succeq 0$
 $\mathcal{E}_{2} = \{x | x^{T} F_{2} x + 2g_{2}^{T} x + h_{2} \leq 0\}$
where $F_{2} \in \mathbb{S}^{n}, g_{2} \in \mathbb{R}^{n}, h_{2} \in \mathbb{R}$ and $\begin{bmatrix} F_{2} & g_{2} \\ g_{2}^{T} & h_{2} \end{bmatrix} \succeq 0$
 $\mathcal{E}_{1} \subseteq \mathcal{E}_{2}$ if and only if
 $\exists \lambda > 0$ s.t. $\begin{bmatrix} F_{2} & g_{2} \\ g_{2}^{T} & h_{2} \end{bmatrix} \preceq \lambda \begin{bmatrix} F_{1} & g_{1} \\ g_{1}^{T} & h_{1} \end{bmatrix}$ (S)

Note: Sufficient Condition is clear.

If there exists $\lambda > 0$ satisfying (S), then given $x \neq 0$,

$$\begin{bmatrix} x^T & 1 \end{bmatrix} \begin{bmatrix} F_1 & g_1 \\ g_1^T & h_1 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} \succeq 0 \quad \Rightarrow \quad \begin{bmatrix} x^T & 1 \end{bmatrix} \begin{bmatrix} F_2 & g_2 \\ g_2^T & h_2 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} \succeq 0$$

Generalized S-Procedure

We often encounter problems with constraints of the form

$$g_0(x) \ge 0$$
 for all $x \in \mathbb{R}^n$ (S1)

satisfying
$$g_1(x) \ge 0, \dots, g_m(x) \ge 0$$
 (S2)
where $g_0, g_1, \dots, g_m : \mathbb{R}^n \to \mathbb{R}$.

$\Leftrightarrow \text{ The set-containment constraint} \\ \{x \in \mathbb{R}^n | g_1(x) \ge 0, \ \cdots, \ g_m(x) \ge 0\} \subseteq \{x \in \mathbb{R}^n | g_o(x) \ge 0\}$

A potentially conservative but useful algebraic sufficient condition for (S1) and (S2) is the existence of positive-semidefinite functions $s_1, \dots, s_m : \mathbb{R}^n \to \mathbb{R}$ such that $g_0(x) - \sum_{i=1}^m s_i(x)g_i(x) \ge 0$ for all $x \in \mathbb{R}^n$ (S3)

For the case in which g_0, g_1, \dots, g_m are quadratic functions, the sufficient condition in (S3) is known as the S-procedure relaxation for (S1) and (S2).

LMI Programming: YALMIP

YALMIP: Yet Another LMI Parser

		Edit Sign in
YALMIP Wiki		
What Is YALMIP	search for	
YALMIP is a modelling language for advanced modeling and solution of convex and nonconvex optimization problems. It is implemented as a free (as in no charge) toolbox for MATLAB.	Home	
The main motivation for using YAI MIP is rapid algorithm development. The language is consistent with	What is YALMIP?	
standard MATLAB syntax, thus making it extremely simple to use for anyone familiar with MATLAB.	Tutorials & intro	
Another banefit of VALMID is that it implements a large amount of modeling tricks, allowing the user to	Applied examples	
concentrate on the high-level model, while YALMIP takes care of the low-level modeling to obtain as	Commands	
efficient and numerically sound models as possible.	Solvers	
Problem classes	Common question	s
The modelling language supports a large number of optimization classes, such as linear, quadratic,	Acknowledgement	
second order cone, semidefinite, mixed integer conic, geometric, local and global polynomial,	Read more	
multiparametric, bilevel and robust programming.	Download	
Solvers	License	
One of the central ideas in YALMIP is to concentrate on the language and the higher level algorithms,	Related tools	
while relying on external solvers for the actual computations. However, YALMIP also implements internal	Forum	
algorithms for global optimization, mixed integer programming, multiparametric programming, sum-of-squares programming and robust optimization. These algorithms are typically based on the	Forum (old)	
וסייי-וביבו שבווקיוווש ומוושממשב מימוומטוב ווד דאבויוור, מווע שטויב שטי-קוסטובוווש עשווש נוופ פאנפרוומו שטויפרט.	Recent posts	

Enjoy!

Johan Löfberg

Recent posts

Release 20140619 Octave support

Johan Löfberg

http://users.isy.liu.se/johanl/yalmip/

SDP Solvers in YALMIP

Linear Programming (free) CDD, CLP, GLPK, LPSOLVE, QSOPT, SCIP, (commercial) CPLEX, GUROBI, LINPROG, MOSEK, XPRESS Mixed Integer Linear Programming (free) CBC, GLPK, LPSOLVE, SCIP, (commercial) CPLEX, GUROBI, MOSEK, XPRESS **Quadratic Programming** (free) BPMPD, CLP, OOQP, QPC, qpOASES, quadprogBB, (commercial) CPLEX, GUROBI, MOSEK, NAG, QUADPROG, XPRESS Mixed Integer Quadratic Programming (commercial) CPLEX, GUROBI, MOSEK, XPRESS Second-order Cone Programming (free) ECOS, SDPT3, SeDuMi (commercial) CPLEX, GUROBI, MOSEK Mixed Integer Second-order Cone Programming (commercial) CPLEX, GUROBI, MOSEK Semidefinite Programming (free) CSDP, DSDP, LOGDETPPA, PENLAB, SDPA, SDPLR, SDPT3,

SDPNAL, SeDuMi (commercial) LMILAB, MOSEK, PENBMI, PENSDP General Nonlinear Programming and other solvers