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Problems

Convex Optimization

P-satz Relaxations

Exploit Structure
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(Quadratic Forms)

PSD cones

Non-negativity

2

(SOS Decomposition)

Solvable in polynomial time
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Motivating Examples
Discrete Problems: LQR with Binary Inputs
System

Objective

Linear discrete-time system

(binary inputs)

Given                   and the evolution of reference signals         , 
find an optimal controller    minimizing the quadratic tracking error

, ,

System
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Motivating Examples
Nonlinear Problems: Lyapunov Stability

Moore-Greitzer model of a jet engine with controller:

4th order polynomial function 

Find a Lyapunov function               .

[Ex.]

Candidate

Graph Problems: MAX CUT partitioning
Partition the nodes of a graph in two disjoint sets, 
maximizing the number of edges between sets
How to compute bounds, or exact solutions, 
for this kind of problems?
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Polynomial Programming: Optimization Problem

Polynomial non-negativity

s.t. ?

(i.e.,     is positive definite: PSD)

[Ex.] Given                                     ,

minimize
subject to

(polynomials)
(polynomials)
(polynomials)

Primal decision problem

Yes
No

: globally non-negative

This problem is NP-hard
But, decidable.
Certificates:

Exhibit      s.t.

No Need a certificate/witness

i.e., a proof that 
there is no feasible point

(Infeasibility certificate)
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Sum of Squares(SOS) Decomposition

: Polynomial non-negativity

For              , a multivariate polynomial          is a sum of squares
if there exist some polynomials                                               
such that                                    . Then,          is nonnegative.

[Ex.]
We can write any polynomial as a quadratic function of monomials

is an SOS decomposition

If for some    , we have                    , then we can factorize

cf. sosdemo1.m
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SOS and Semidefinite Programming (SOS/SDP)

is SOS iff such that             and

Suppose                                 , of degree
Let     be a vector of all monomials of degree less than or equal to

If      is a feasible point of the SDP, then to construct the SOS representation

The number of components of      is 

Comparing terms gives affine constraints on the elements of

[SDP]

Factorize                     , and write                                , so that

One can factorize using e.g., Cholesky or eigenvalue decomposition
The number of squares     equals the rank of
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Convexity

The set of PSD and SOS polynomials are a convex cones,
i.e.,

Let           be the set of SPD polynomials of degree

are PSD is PSD 

Let           be the set of SOS polynomials of degree
Both           and            are convex cones in        where
We know                         , and testing if                   is NP-hard
But testing if                   is an SDP (but a learge one)

David Hilbert

PSD = SOS iff
(i)
(ii)
(iii)

: quadratic polynomials
: univariate polynomials
: quartic polynomials in two variables

In general,      is PSD does not imply     is SOS
Every PSD polynomial is a SOS of rational functions
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Why does this work?

Three independent facts, theoretical and experimental:

The existence of efficient algorithms for SDP1.

The size of the SDPs grows much slower than the Bezout number2.

A bound on the number of (complex) critical points--
A reasonable estimate of complexity--

(for dense polynomials)--

Almost all (exact) algebraic techniques scale as--

The lower bound            very often coincides with3.

Why? What does often mean?--

SOS provides short proofs, even though they are not 
guaranteed to exists
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Help on SOS
U. Topcu, A. Packard, P. Seiler, G. Balas, 
“Help on SOS,” IEEE Control Systems Magazine, 30-4, 18/23, 2010

Ufuk Topcu

http://www.cds.caltech.edu/sostools/

MATLAB Toolbox: SOS TOOLS

Pablo A. Parrilo
(with MATLAB symbolic toolbox, SeDuMi)
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Diagram Depicting Relations

SOS Program SDP

SOS Program
Solution

SDP 
Solution

SOSTOOLS

SOSTOOLS

SeDuMi

1) Initialize a SOS Program, declare the SOS program variable
2) Define SOS program constraints
3) Set objective function (for optimization problem)
4) Call solver
5) Get solutions

(optimization solver)
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SOS Problem: Example of SOSTOOLS 

Find a polynomial
syms x1 x2 x3 ;
vars = [ x1; x2; x3 ] ;
syms a1 a2 a3 ;
decvars = [ a1; a2; a3 ] ;

f = [ -x1^3 –x1*x3^2; 
-x2 -x1^2*x2; 
-x3 -3*x3/(x3^2+1) +3*x1^2*x3 ] ;

Program1 = sosprogram(vars,decvars);

MATLAB Command

(      : the unknown decision variables)

Solution

Problem

V = a1*x1^2 +a2*x2^2 +a3*x3^2 ;
C1 = V –( x1^2 +x2^2 +x3^2 ) ;
Program1 = sosineq( Program1, C1 ) ;

Vdot = diff(V,x1)*f(1) + diff(V,x2)*f(2) + diff(V,x3)*f(3);
C2 = -Vdot*(x3^2+1) ;
Program1 = sosineq( Program1, C2 ) ;

MATLAB Command

Program1 = sossolve( Program1 ) ;
SOLV = sosgetsol( Program1, V )

MATLAB Command

Constraints

sosdemo2.m
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SOS program: Global optimization

Problem:

Not convex. Many local minima. NP-hard.
How to find good lower bounds?

Find the largest      s.t.

If exact, can recover optimal solution
Surprisingly effective

Solving, the maximum     is -1.0316. Exact bound.

is SOS

with

P.A. Parrilo and B. Sturmfels, “Minimizing polynomial functions,” Algorithmic and quantitative real 
algebraic geometry, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 60, 
83/99, AMS, 2003

cf. sosdemo3.m
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SOS program: Coefficient Space

Convex and semi-algebraic

Problem:
What is the set of values of                    for which         is PSD? SOS?

Let

SOS decomposition

Feasible set (satisfying PSD)

s.t.

PSD = SOS: univariate polynomials



15

SOS program: Lyapunov Stability Analysis
To prove asymptotic stability of                at

Find a               s.t. is SOS is SOS

Both conditions are affine in the coefficients, 
so can use SOS/SDP

A. Lyapunov

[Ex.]

and

Moore-Greitzer model of a jet engine with controller

Resulting Lyapunov function

Check nonnegativity Check SOS conditions

[Ex.] s.t.

(affine of quadratic forms: LMI) (affine of polynomials)
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SOS program: Lyapunov Stability Analysis

For the system, we can find a Lyapunov function with quartic polynomial

[Ex.] Autonomous System

The matrices are positive definite, so this proves asymptotic stability

is SOS

is SOS

M. Krstic
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Nonlinear Control Synthesis

For                ,
Lyapunov stability criterion (asymptotic stability)

Parametrizing             , can apply SOS methods

a Lyapunov function          satisfies

Anders Rantzer

A. Rantzer, “An converse theorem for density functions,” Proc. 41st IEEE Conf. on Decision and 
Control, pp. 1890-1891, 2002.

“Dual”

[Ex.]

A stabilizing controller is:

The synthesis problem is convex in              :

,

a “dual” Lyapunov function:
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Summary: About SOS/SDP

Semi-definite matrices are SOS quadratic forms
SOS polynomials are embedded into PSD cone

is SOS iff such that             and [SDP]

The resulting SDP problem is polynomially sized (in     , for fixed      )

By properly choosing the monomials, we can exploit structure
(sparsity, symmetries, ideal structure, graph structure, etc.)

Important Feature: The problem is still a SDP 
if the coefficients of      are variable, and the dependence is affine

Can optimize over SOS polynomials in affinely described families

This fact (Exploiting this structure) will  be crucial in applications

[Ex.] If                                                      ,
we can “easily” find values of           for which           is SOS
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Dual Problem: Motivating Example
Primal Problem:
subject to

Dual Problem:
subject to

otherwise, except boundary condition

if

Lagrange dual function:
Non-convex

Duality Gap

Optimal
at
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The Dual is not intrinsic
The dual problem, and its corresponding optimal value, are not 
properties of the primal feasible set and objective function alone

(Instead, they depend on the particular equations and inequalities used)

To construct equivalent primal optimization problems with different duals:

(1)

(2)

(3)

Replace the objective           by                where     is increasing

Introduce new variables and associated constraints, e.g.,

Add redundant constraints

minimize

minimize
subject to
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Recall: Motivating Example

Dual Problem:
subject to

Primal Problem’:
subject to

(adding the redundant constraint)

The same primal feasible set and 
same optimal value as before

otherwise, except boundary condition

if

Lagrange dual function:

This problem may be written as 
an SDP using Schur complement
Optimal

at

Adding redundant constraints makes the dual bound tighter
This always happens! Such constraints are called valid inequalities
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Algebraic Geometry
There is a correspondence 
between the geometric object (the feasible subset of       ) 
and the algebraic object (the cone of valid inequalities)

This is a dual relationship

The dual problem is constructed from the cone

For equality constraints, there is another algebraic object; 
the ideal generated by the equality constraints

For optimization, we need to look both at the geometric objects 
(for the primal) and the algebraic objects (for the dual problem)
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An Algebraic Approach to Duality

(polynomials)
Feasibility Problem:

s.t.

[Ex.] Primal Problem’’:
Given             , s.t.

where

with

Optimal of dual problem at
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An Algebraic Approach to Duality
Every polynomial in                                 is nonnegative on the feasible set

If there is a polynomial                                     which satisfies

then the primal problem is infeasible

[Ex.] (Cont.)
Then clearly                                            and

So for any                , the primal problem is infeasible. 
This corresponds to Lagrange multipliers           for the theorem of alternatives

Let                                         . 

Alternatively, this is a proof by contradiction
If there exists     such that                                             then we must 
also have                  , since
But we proved that     is negative if
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An Algebraic Approach to Duality
[Ex.] (Cont.)

giving the stronger result that for any             the inequalities are 
infeasible. Again, this corresponds to Lagrange multipliers

In both of these examples, we found       in the cone which was globally 
negative. We can view       as the Lagrange function evaluated at a 
particular vale of 

Let                                                       . 

The Lagrange multiplier procedure is searching over a particular subset of 
functions in the cone; those which are generated by linear combinations of 
the original constraints
By searching over more functions in the cone we can do better

Normalization
We can also show that                                             , which gives a very 
simple proof of primal infeasibility.

SOSIn the cone
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An Algebraic Dual Problem

(polynomials)
Feasibility Problem:

s.t.

“Dual”

Dual Feasibility Problem:
?

If the dual problem is feasible, then the primal problem is infeasible

In fact, a result called the Positivstellensatz(P-satz) implies 
that strong duality holds here

The above algebraic procedure is searching over 
conic combinations
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[Ex.]
An Algebraic Dual Problem

Linear inequalities

Feasibility Problem:
s.t.

Let us define for and

Searching over the function

Dual Feasibility Problem:
s.t.

The above dual condition is
which holds iff and

Frakas lemma
If
Then there does not exist
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[Ex.]

Feasibility Problem:

where

An Algebraic Dual Problem

By the P-satz, the primal is infeasible iff there exist polynomials 
such that

A certificate is given by

, , ,
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Optimization Problem

minimize
subject to (polynomials)

(polynomials)
Optimization Problem:

Corresponding Feasibility Problem:
s.t.

maximize
subject to

Optimization Problem’:

where                  are SOS

The variables here are (coefficients of) the polynomials
We will see later how to approach this kind of problem using SDP
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Feasibility of Semi-algebraic Set
Suppose     is a semi-algebraic set represented by polynomial inequalities 
and equations

Feasibility Problem: ?

[Non-trivial result] the feasibility problem is decidable
But NP-hard (even for a single polynomial, as we have seen)
We would like to certify infeasibility
The positivstellensatz(P-satz)

G. Stengle: “A Nullstellensatz and a Positivstellensatz in Semialgebraic Geometry,” 
Mathematische Annalen, 207 (2): 87–97, 1974

To prove infeasibility, find                                                       such that

Gilbert Stengle
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[Ex.]

Feasibility Problem:

where

Feasibility of Semi-algebraic Set

By the P-satz, the primal is infeasible iff there exist polynomials 
such that

A certificate is given by

, ,
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[Ex.]

Feasibility of Semi-algebraic Set
Farkas Lemma

Primal Feasibility Problem:
s.t.

Let ,
Then this system is infeasible iff

Searching over linear combinations, the primal is infeasible 
if there exist             and      such that

Equating coefficients, this is equivalent to

Primal Feasibility Problem’:
s.t.
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Relaxation scheme

Non-negativity

Lifted problem Sum of squares

Lifting and convex hull

SDP

Relaxation

Many related open questions:

What sets have “nice” SDP representations?
Links to “rigid convexity” and hyperbolic polynomials

However, they are a very special kind of SDP, with very rich 
algebraic and combinatorial properties

Directly provides hierarchies of bounds for optimization
P. Parrilo, Structured Semidefinite Programs and Semialgebraic Geometry Methods in 
Robustness and Optimization, Ph.D. dissertation, California Institute of Technology, 2000.
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Exploiting Structure

Semidefinite Programs(SDP)

SOS Programs

Exploit Structure

Symmetry reduction
Sparsity
Ideal structure
Graph structure

Algebraic structure Numerical structure

Rank one SDPs
Representation
Orthogonalization
Displacement rank

Exploiting this structure is crucial in applications.



35

Semi-algebraic games

Game with an infinite number of pure strategies.

In particular, strategy sets are semi-algebraic, defined by 
polynomial equations and inequalities

Simplest case: 
two players, zero-sum, payoff given by              , strategy space 
is a product of intervals.

Theorem:
The value of the game, and the corresponding optimal mixed 
strategies, can be computed by solving a single SOS program

Perfect generalization of the classical LP for finite games

Related results for multiplayer games and correlated equilibria
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SOS Decomposition

An SDP with equality constraints. Solving, we obtain:

and therefore

[Ex.]

is SOS iff satisfying the SDP
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Polynomials in one variable

[Ex.]

If                   , then       is SOS iff is PSD

All real roots must have even multiplicity and highest coefficient is positive

Every PSD scalar polynomial is the sum of one or two squares

Quadratic Polynomials

A quadratic polynomial     in     variables is PSD iff is SOS

is PSD iff where

is SOS iff
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The Motzkin Polynomial
A positive semidefinite polynomial, 
that is not a sum of squares

Nonnegativity follows from the arithmetic-
geometric inequality applied to

Introduce a nonnegative factor

Solving the SDPs we obtain the decomposition:
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The Univariate Case

In the univariate case, 
the SOS condition is exactly equivalent to nonnegativity

The matrices       in the SDP have a Hankel structure 
This can be exploited for efficient computation
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Necessary Conditions

Suppose                                                                         ; then

is PSD is even,               and

What is the analogue in       variables?

[Ex.] The Newton polytope

Suppose
The set of monomials                is called the frame of

The Newton polytope of      is its convex hull

The example shows
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Necessary Conditions for nonnegativity

If is PSD, then 
every vertex of                has even coordinates, and a positive coefficient

[Ex.]

[Ex.]

Properties of Newton Polytopes

is not PSD, since term        has coords

is not PSD, since term             has a negative coefficient

Products:
Consequently,

If       and      are PSD polynomials then

SOS decomposition
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Sparse SOS Decomposition
[Ex.] Find an SOS representation for

The squares in an SOS decomposition 
can only contain the monomials

Without using sparsity, we would 
include all 21 monomials of degree less 
than 5 in the SDP

With sparsity, we only need 5 monomials
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SPOT: Systems Polynomial Optimization Tools

SOS Programming: SPOT

Alexandre Megretski

Software:
Manual:

http:// web.mit.edu/ameg/www/images/spot-20101216.zip
http://web.mit.edu/ameg/www/images/spot_manual.pdf
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SOS Problems: Extensions
Other linear (partially) differential inequalities 

Many possible variations:
Nonlinear         analysis, parameter dependent Lyapunov functions, 
Constrained nonlinear systems, systems with time-delay, hybrid systems 
mixed integer programming(MIP) problem etc.

Can also do local results (for instance, on compact domains)

Polynomial and rational vector fields, or functions with 
an underlying algebraic structure

Natural extension of the LMIs for the linear case

Only for analysis, proper synthesis is a trick problem

1. Lyapunov:

2. Hamilton-Jacobi:
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Valid inequalities and Cones

The function                       is called a valid inequality if
for all feasible

Given a set of inequality constraints, we can generate others as follows:
(1) If      and      define valid inequalities, then so does
(2) If      and      define valid inequalities, then so does
(3) For any     , the function                       defines a valid inequality

(1) and               implies
(2)
(3)

A set of polynomials                                  is called a cone if

and               implies
implies

It is called a proper cone if
By applying the above rules to the inequality constraint functions (algebra), 
we can generate a cone of valid inequalities

: the set of polynomial functions on     with real coefficients
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Algebra: Cones
For               , the cone defined by     is

If       and       are cones, then so is
Every cone contains the set of SOS polynomials    , which is the smallest cone
The set                                                              is the set of all finite products 
of polynomials     , together with 1

The smallest cone containing the polynomials                    is

If                   are valid inequalities, then so is every polynomial in

(linear combination of squarefree products of     with SOS coefficients)

The polynomial    is an element of                               iff

where a coefficient                  that is a sum of squares
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An algebraic Dual Problem: Interpretation
Searching the Core

Lagrange duality is searching over linear combinations with nonnegative 
coefficients to fine a globally negative function as a certificate

The algebraic procedure is searching over conic combinations

where a coefficient                  that is a sum of squares

Formal Proof

The objective is to automatically search the cone for negative functions: 
i.e., proofs of infeasibility

View                   are predicates, with                 meaning that     satisfies
Then                              consists of predicates which are logical 
consequences of
If we find -1 in the cone, then we have a proof by contradiction
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Frakas Lemma

Frakas lemma states that the following are strong alternatives:

(i)

(ii)

(Algebraic definition)

(Geometric interpretation) (     Lagrangian duality)

(i)

(ii)

is in the convex cone

defines the hyperplane

with separates    from the cone
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Valid Equality constraints and Ideals

The function                       is called a valid equality constraint if
for all feasible

Given a set of equality constraints, we can generate others as follows:
(1) If      and      are valid equalities, then so is
(2) For any                              , if     is a valid equality, then so is

(1) for all             ,
(2)

A set of polynomials                                  is called a ideal if

for  all             and

Given                    , we can generate an ideal of valid equalities by 
repeatedly applying these rules

Using these will make the dual bound tighter
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Algebra: Ideals

Every polynomial in                               is a valid equality

This gives the ideal generated by , 

Generator of an ideal

is the smallest ideal containing
The polynomials                   are called the generators/basis of the ideal

Properties of ideals

If      and      are ideals, then so is

An ideal generated by one polynomial is called a principal ideal
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Algebra: The real Nullstellensatz(N-satz)

[Ex.] Suppose Then clearly
We saw earlier that the complex N-satz cannot be used to prove
But we have with and
and so the real N-satz implies

The polynomial equation                        gives a certificate of infeasibility

: the cone of polynomials representable as SOS
Suppose

Equivalently, there is no                 such that 

iff there exists                                            and               such that
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Algebra: The Positivstellensatz(P-satz)

Centerpiece of real algebraic geometry

Feasibility Problem for basic semi-algebraic sets:
s.t.

Call the feasible set     ; recall
Every polynomial in                                    is nonnegative on
Every polynomial in                                    is zero on

Dual Feasibility Problem:
and

These are strong alternatives

? s.t.
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Testing the P-satz

Dual Feasibility Problem:
and? s.t.

This is a convex feasibility problem in 
To solve it, we need to choose a subset of the cone to search; i.e., the 
maximum degree of the above polynomial; then the problem is a SDP

This gives a hierarchy of syntactically verifiable certificates

The validity of a certificate may be easily checked; 
e.g., linear algebra, random sampling

Unless NP=co-NP, the certificates cannot always be polynomially sized
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Infeasibility Certificates
and associated computational techniques

Complex numbers Real numbers

Linear

Polynomial

Range/Kernel
Linear algebra

Farkas lemma
Linear programming

N-satz

Bounded degree: 
linear algebra, 
Groebner bases

P-satz

Bounded degree: 
SDP

(a central result in real 
algebraic geometry)

Polynomial systems over

Common generalization of Hilbert’s N-satz and LP duality

SOS are a fundamental ingredient

Guarantees the existence of infeasibility certificates for 
real solutions of systems of polynomial equations
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Infeasibility Certificates: Some Theorems
(Range/Kernel)

(Hilbert’s N-satz)

(Farkas Lemma)

(P-satz)

is infeasible

s.t.

is infeasible in

is infeasible

s.t.

Let                                be 
polynomials in             . Then, 

is infeasible in

s.t.
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Liftings
By going to higher dimensional representations, things may become easier:

“complicated” sets can be the projection of much simpler ones

A polyhedron in        with a “small” number of faces can project 
to a lower dimensional space with exponentially many faces

Basic semialgebraic sets can project into non-basic semialgebraic sets

An essential technique in integer programming

[Ex.] minimize subject to

Feasible set Not convex
Lifting

minimize

subject to and
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The dual side of SOS: Moment sequaences
The SDP dual of the SOS construction gives efficient semidefinite liftings

[Ex.] For the univariate case

with

The matrices            are Hankel, positive semidefinite, and rank one
The convex hull                    contains only PSD Hankel matrices

In fact, in the univariate case every PSD Hankel is in the convex hull
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Convex Combination, Convex Hull and Convex Cone
Convex combination of                   :

Any point      of the form 

with 

Convex hull             :
Set of all convex combinations of points in

Conic (nonnegative) combination of       and       :
Any point      of the form 

with 

Convex Cone:
Set that contains all conic combinations of points in the set
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Positive Semidefinite (PSD) Cone
Notations:

: set of symmetric              matrices

: positive semidefinite             matrices (convex cone)

: positive definite              matrices

[BV04] S. Boyd and L. Vandenberghe: Convex Optimization, 
Cambridge University Press, 2004

[Ex.]
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Algebraic structure
Sparseness: few non-zero coefficients

Newton polytopes techniques
Ideal structure: equality constraints

SOS on quotient rings. Compute in the coordinate ring. Quotient bases.
Graph structure:

Dependency graph among the variables
Symmetries: invariance under a group

SOS on invariant rings.
Representation theory and invariant-theoretic methods

Numerical structure
Rank one SDPs

Dual coordinate change makes all constraints rank one
Efficient computation of Hessians and gradients

Representations Interpolation representation. Orthogonalization
Displacement rank Fast solvers for search direction
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Algebraic Structure: SOS over everything…

Algebraic tools are essential to exploit problem structure:

Standard Equality constraints Symmetries

Polynomial ring Quotient ring Invariant ring

Monomials Standard monomials Isotypic components

Hibert series

Finite convergence
for zero dimensional ideals

Molien series

Block diagonalization


