Robust Control

Spring, 2016

Instructor: Prof. Masayuki Fujita (S5-303B)

3rd class

Tue., 19th April, 2016, 10:45~12:15, S423 Lecture Room

3. SISO Loop Shaping

3.1 Computer Controlled System

3.2 Modeling

[SP05, Sec. 3.7, 1.4, 1.5]

3.3 Example

[SP05, Sec. 2.6, 5.6, 5.7, 5.9]

Reference:

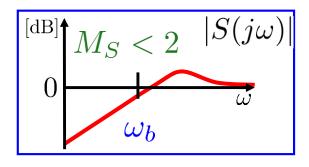
[SP05] S. Skogestad and I. Postlethwaite, *Multivariable Feedback Control; Analysis and Design*,
Second Edition, Wiley, 2005.

SISO Loop Shaping

Loop Transfer Function

$$L(s) = P(s)K(s)$$

Sensitivity:
$$S = \frac{1}{1+L}$$



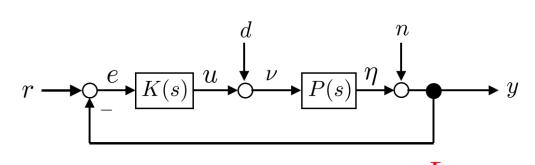
$$|L| \gg 1 \rightarrow |S| \ll 1$$
 large small

Loop Shaping

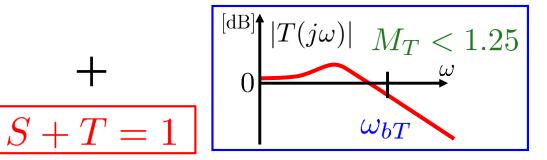
Closed-loop S, T

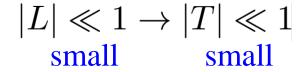
Open Loop *L*

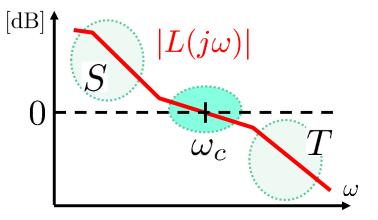
Stability, Performance



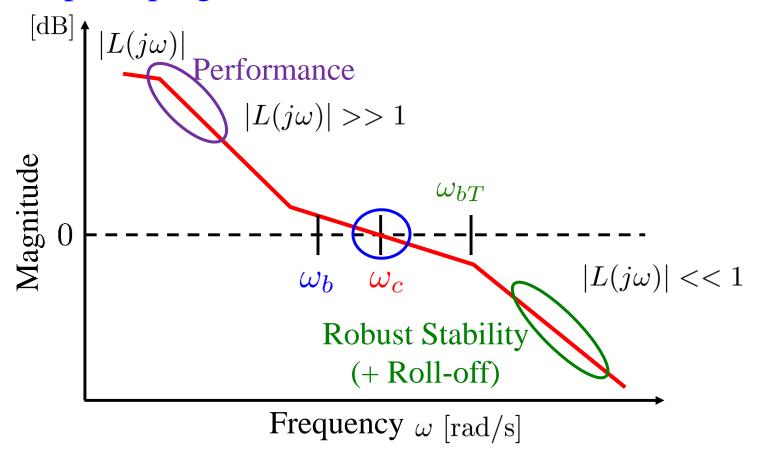
Comp. Sensitivity: $T = \frac{L}{1 + L}$







SISO Loop Shaping [SP05, pp. 41, 42, 343]



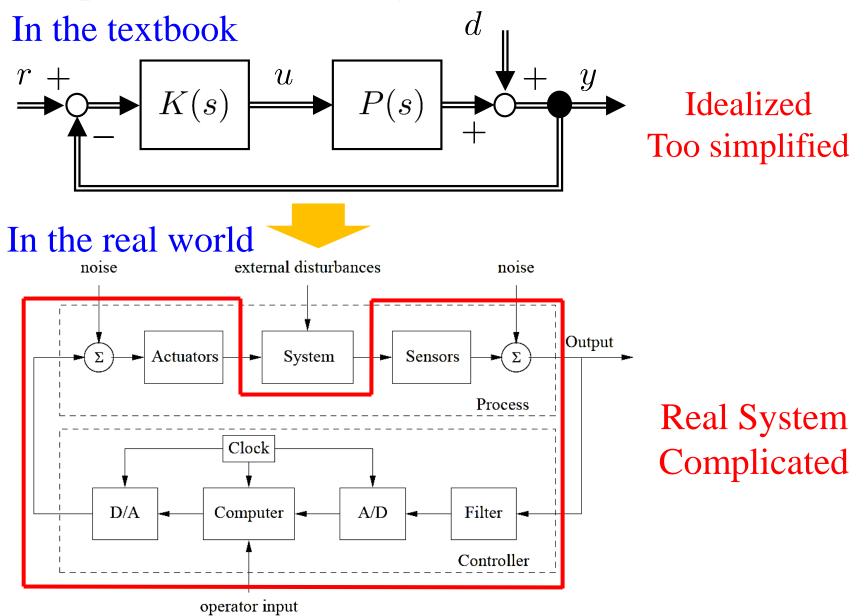
Loop Shaping Specifications

- Gain Crossover Frequency ω_c
- Large Magnitude at Lower Frequencies

• Small Magnitude at Higher Frequencies

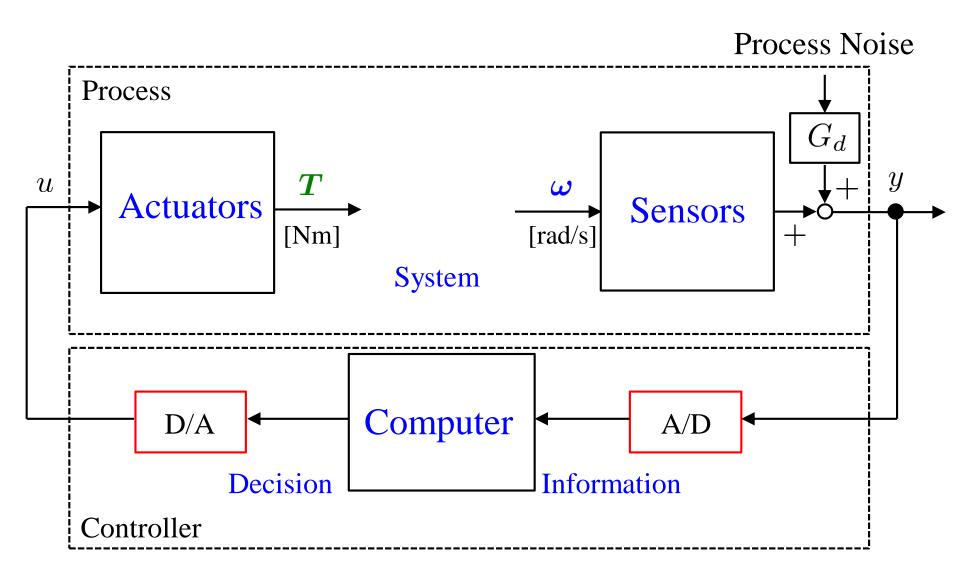
Target Loop

Computer Controlled System



5

Computer Controlled System



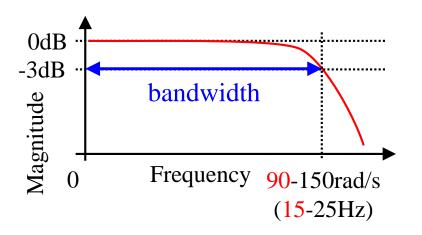
Sensor: Gyroscope

Kinematics

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & a \\ -a & 1 \end{bmatrix} \begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix}$$
 Interaction (Coupling)

(Sensor measurement are poorly aligned.)

Frequency Response



Resolution

$$\delta y_i = 5.3 \times 10^{-4} \text{ rad/s} = 0.03 \text{ deg/s}$$

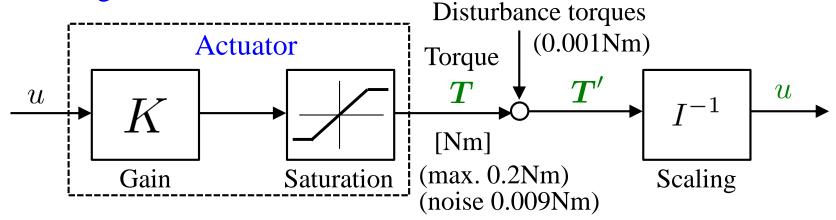
Measurable Range

$$y_i \in [-y_i^{\text{max}}, y_i^{\text{max}}],$$

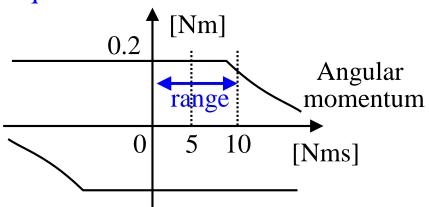
 $y_i^{\text{max}} = 0.26 \text{ rad/s} = 15 \text{ deg/s}$

Actuator: Reaction Wheel

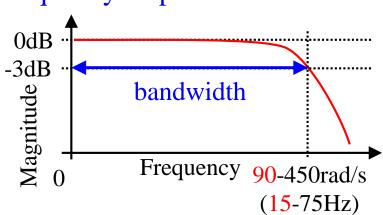
Block diagrams



Torque-momentum limitations



Frequency response



Controller: Computer

Onboard computer loaded in 1989:

80386/80387 RISC processor (Intel, Loral RAD-6000 32bit)

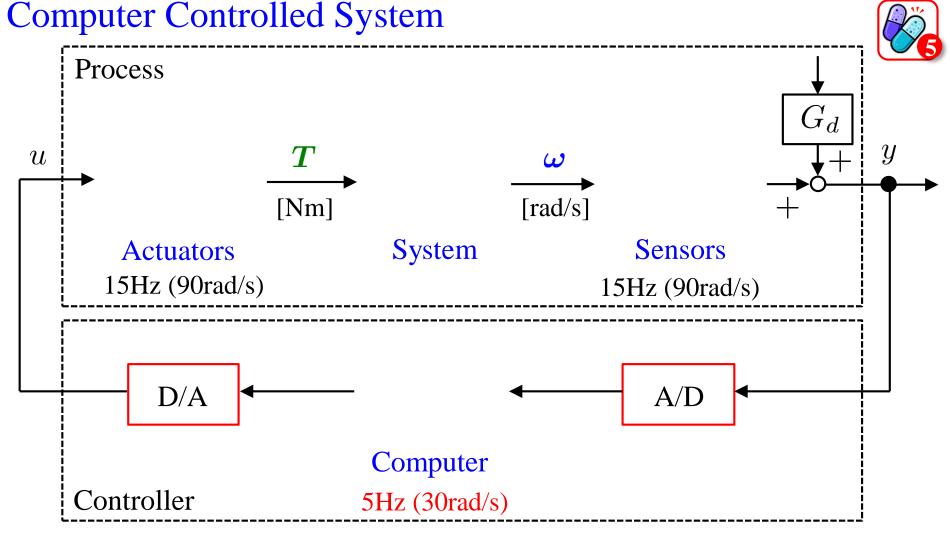
Control law		
LQG	(Processing Time)	94-184 ms (5-10Hz)

cf. [HOKN11, Table 2] ETS-VIII (launched by 2006)

Processing time and memory requirement of each control law

Control law	Order of Controller	Processing Time	Required memory
Gain Scheduling	14	1.40 ms (714 Hz)	4140 byte
μ -synthesis	27	2.28 ms (438 Hz)	7948 byte
DVDFB		3.20 ms (312 Hz)	14780 byte

[HOKN11] Y. Hamada, T. Ohtani, T. Kida and T. Nagashio. Synthesis of a linearly interpolated gain scheduling controller for large flexible spacecraft ETS-VIII, *Control Engineering Practice*, **19**(6) 611-625, 2011.



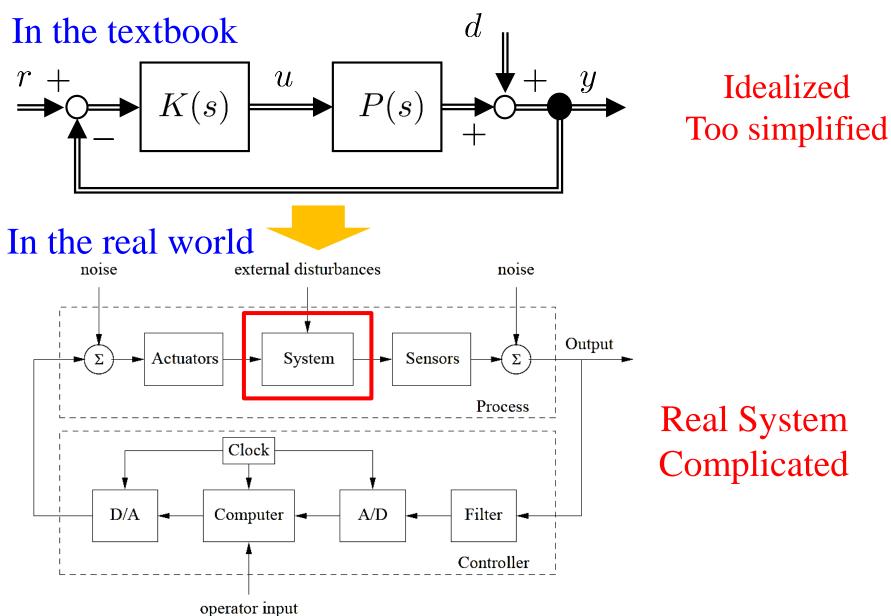
Real physical systems have a multitude of limitations on available bandwidth

System Bandwidth $f_c = 5 Hz$

Time Delay Margin
$$0 \le \theta \le 0.02 s = \frac{1}{10 f_c}$$

Gain Margin
$$0.8 \le k \le 1.2$$
 $\begin{cases} 20\% \text{ variation} \\ GM \ge 2 \text{dB} \end{cases}$

Computer-controlled System



11

Modeling

STEP 1.

Real Physical System

(実物)

STEP 2.

Ideal Physical Model

Conceptual/Schematic model (図式化・概念化)

STEP 3.

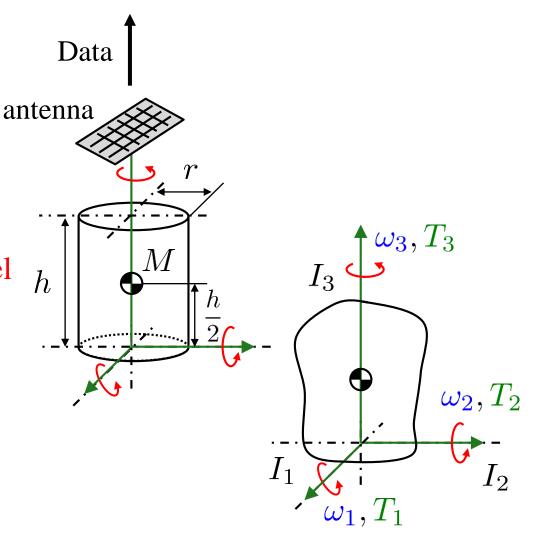
Ideal Mathematical Model

Idealization(理想化)

STEP 4.

Reduced Mathematical Model

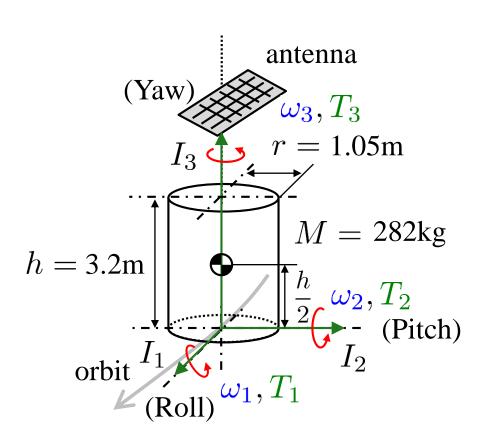
Linearization(線形化)



$$P(s) = \begin{bmatrix} P_{11}(s) & P_{12}(s) \\ P_{21}(s) & P_{22}(s) \end{bmatrix}$$

STEP 2. Ideal Physical Model

Conceptual/Schematic model (図式化・概念化)



Cylindrical Shape

Objective

The angular velocity (ω_1, ω_2) control of a satellite spinning about principal (yaw) axis

Attitude Control Type:

Spin-stabilization on the principle (yaw) axis

 ω_i : angular velocity

 T_i : torque input

 I_i : inertia

STEP 3. Ideal Mathematical Model

Idealization (理想化)

- The satellite is regarded as a **rigid body**
- The satellite is **symmetric** about yaw axis

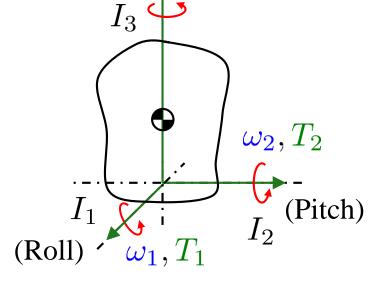
$$I_1 = I_2 = 1.04 \times 10^3 \text{ kgm}^2$$

 $I_3 = 0.15 \times 10^3 \text{ kgm}^2$

Dynamics Euler's Moment Equation

$$I \cdot \dot{\boldsymbol{\omega}} + \boldsymbol{\omega} \times (\boldsymbol{I} \cdot \boldsymbol{\omega}) = \boldsymbol{T}$$

$$\begin{cases} I_1 \dot{\omega}_1 - \omega_2 \omega_3 (I_2 - I_3) = T_1 \\ I_2 \dot{\omega}_2 - \omega_3 \omega_1 (I_3 - I_1) = T_2 \\ I_3 \dot{\omega}_3 = T_3 \end{cases}$$

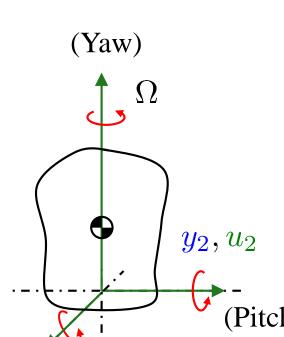


(Yaw)

Nonlinear System

STEP 4. Reduced Mathematical Model

Linearization (線形化)



Assumption

• The spin rate about yaw axis is constant $\omega_3 = 100 \text{ rpm} = 10.46 \text{ rad/s}$ (Constant)

State Space Representation

$$\begin{bmatrix} \dot{\omega}_1 \\ \dot{\omega}_2 \end{bmatrix} = \begin{bmatrix} 0 & a \\ -a & 0 \end{bmatrix} \begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix} + \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & a \\ -a & 1 \end{bmatrix} \begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix}$$

Control Inputs:

(Roll) v_1, u_1

Scaled torque

$$u_1 := \frac{T_1}{I_1}$$
 , $u_2 := \frac{T_2}{I_2}$

Measured Outputs:

Angular velocity y_1 , y_2

Linear System, No State Feedback Structural Mode

$$a := \frac{I_2 - I_3}{I_1} \omega_3 \approx 10 \text{ rad/s}$$

Spinning Satellite: Plant Model [SP05, p. 98]

$$\begin{bmatrix} Y_1(s) \\ Y_2(s) \end{bmatrix} = \begin{bmatrix} \frac{s-a^2}{s^2+a^2} & \frac{a(s+1)}{s^2+a^2} \\ \frac{-a(s+1)}{s^2+a^2} & \frac{s-a^2}{s^2+a^2} \end{bmatrix} \begin{bmatrix} U_1(s) \\ U_2(s) \end{bmatrix}$$

$$P(s) \quad (a = 10 \text{ rad/s})$$

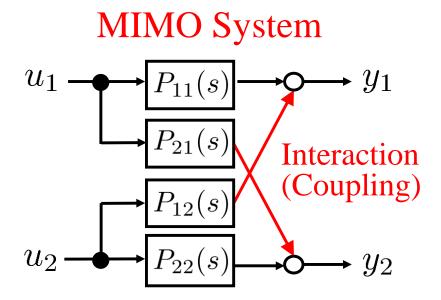
$$P(s) = C(sI - A)^{-1}B + D$$
Roll u_1, y_1

Transfer Function Matrix

$$P(s) = \begin{bmatrix} P_{11}(s) & P_{12}(s) \\ P_{21}(s) & P_{22}(s) \end{bmatrix}$$

$$= \begin{bmatrix} \frac{s-100}{s^2+100} & \frac{10s+10}{s^2+100} \\ \frac{-10s-10}{s^2+100} & \frac{s-100}{s^2+100} \end{bmatrix}$$

Poles: $s = \pm 10j$



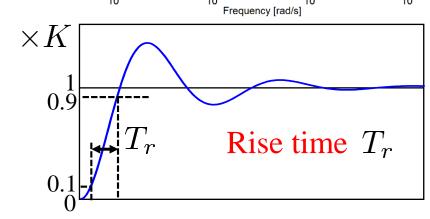
System and Model Real Physical Observation System **Ideal Physical** Idealization Model Uncertainty & (Next Class) Simplification Ideal Math Model Reduced **Analysis** Math Model

System Stabilization and Performance

Unstable Plant [SP05 Sec 5.9]

- Real RHP Poles: $2p < \omega_c$
- Imaginary Poles: $1.15|p| < \omega_c$
- Complex RHP Poles:

$$0.67(x + \sqrt{4x^2 + 3y^2}) < \omega_c$$



Stable Plant

First-order System

$$G_1(s) = \frac{K}{Ts+1} \quad \begin{array}{cc} K > 0 \\ T > 0 \end{array}$$

$$G_2(s) = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \quad \frac{\omega_n > 0}{\zeta \ge 0}$$

Rise time
$$T_r = (\ln 9)T \approx 2.2T$$
 Rise time $T_r = \frac{\pi/2 + \arcsin \zeta}{\omega_r \sqrt{1-\zeta^2}}$

Rise time
$$T_r = \frac{\pi/2 + \arcsin \alpha}{\omega_n \sqrt{1 - \zeta^2}}$$

Performance Specification

 ω_d a 1.15|p| ω_b

Uncertainty

Performance (Previous Class)

- Structural Mode: a = 10 rad/s
- **Imaginary Poles:**

$$p = \pm aj = \pm 10j$$

$$\omega_c > 1.15|p| = 11.5 \text{ rad/s}$$

Disturbance Noise: $\omega_d < \omega_c$ Phase Stabilization

Performance Weight (See 2nd lecture) $\omega_c > \omega_b \geq 11.5 \text{ rad/s}$

Time Delay:
$$\theta \leq 0.02s$$

$$\rightarrow \omega_c < 1/\theta = 50 \text{ rad/s}$$

Unstable Zero: $z = a^2 = 100$

$$\omega_c < z/2 = 50 \text{ rad/s}$$

Phase Lag of Plant: $\omega_u > \omega_c$

Uncertainty Weight (See 4th lecture)

$$\omega_c < 1/ au = 48 ext{ rad/s} ext{ } w_M(s)$$

Spinning Satellite: SISO Plant Model

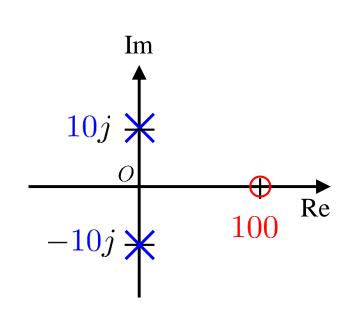
Plant
$$P_s(s) = \frac{s - 100}{s^2 + 100}$$

Poles: $s = \pm 10j$ (on the imaginary axis)

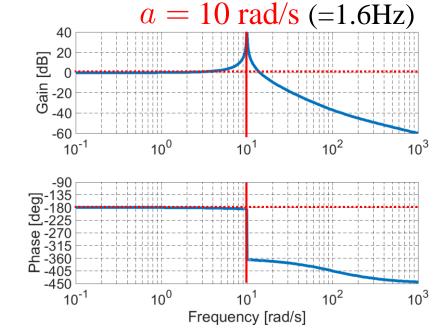
Vibratory System

Zero: s = 100 (unstable zero)

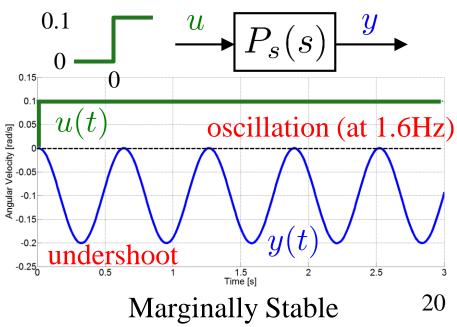
Non-minimum Phase System



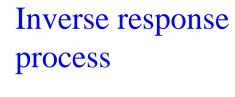
Frequency Response (Bode Plot)

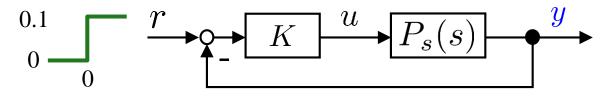


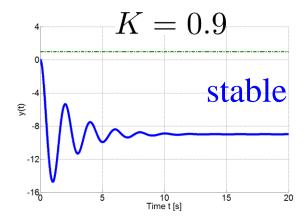
Step Response

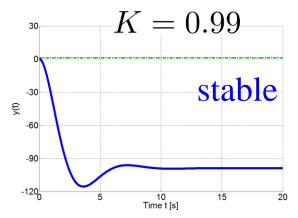


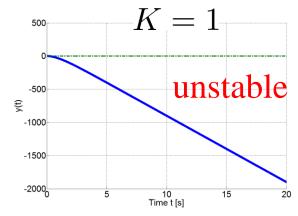
Spinning Satellite: SISO Controller Design (Z-N tuning)











Ziegler-Nichols tuning [SP05, p. 29]

 $K_u = 1$ K_u : Maximum (ultimate) P controller gain

 $P_u = ?$ P_u : corresponding period of oscillations

This system has one right half-plane zero and two undamped complex poles.

The process is difficult to control. ... None of the standard methods for tuning PID controllers work well for this system.

[AH06] Karl J. Astrom and Tore Hagglund (2006) Advanced PID Control, ISA.

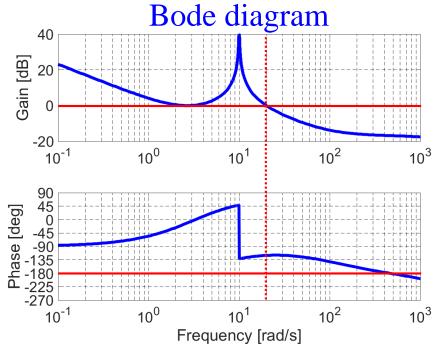
考えてみれば古典制御論も、合理的な筋道を通した方法を確立したとは言えない。

[木村83] 木村:ロバスト制御, 計測と制御, 22(1) 50/52, 1983

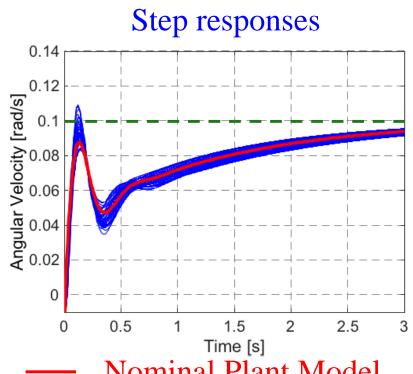
古典制御は周波数領域におけるループ整形の手法と現場調整に基づくPID制御 を2本の柱にしていた[木村89]

PID tuning command: pidtune

$$K_s^{\text{pid}}(s) = -0.86 - \frac{1.34}{s} - 0.135s$$



 $GM = 16.8 dB \ \omega_{pc} = 462 rad/s$ $PM = 60 deg \quad \omega_c = 20.0 rad/s$



Nominal Plant Model

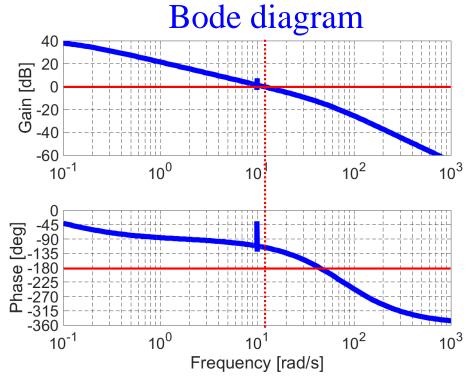
Perturbed Plant Model

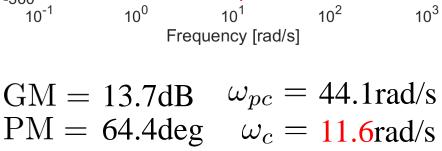
この補償法は決して体系的なものではなく、今から思えば使いやすいものでもない22

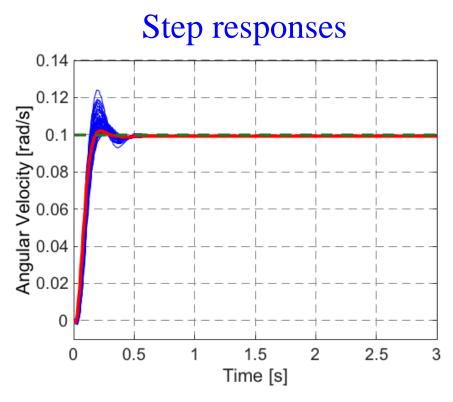
*H*₂ Controller

(See 6th lecture)

$$K_s^2(s) = \frac{-542.44(s^2 + 0.0006864s + 99.99)}{(s + 0.115)(s^2 + 134.9s + 4558)}$$
 (Reduced Order 3)





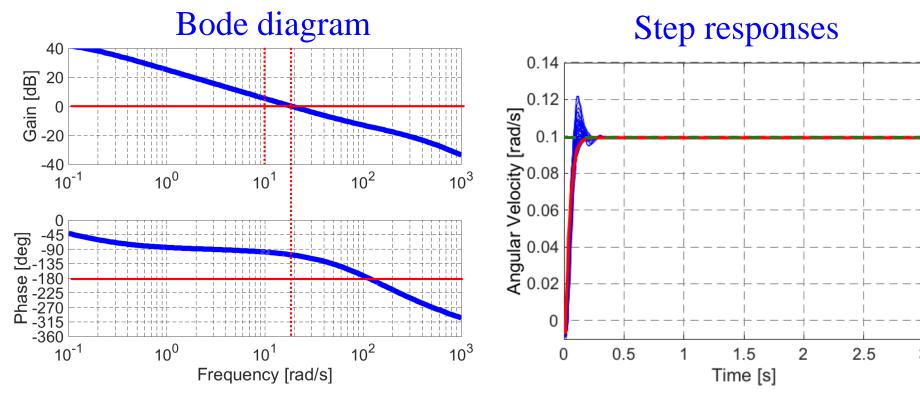


Nominal Plant ModelPerturbed Plant Model

 H_{∞} Controller

(See 6th lecture)

$$K_s^{\infty}(s) = \frac{-28210(s^2 + 100)}{(s + 897.3)(s + 169.7)(s + 0.1136)}$$
 (Reduced Order 3)



GM = 13.9 dB ω PM = 72.2 deg

 $\omega_{pc} = 114 \text{rad/s}$ $\omega_c = 18.7 \text{rad/s}$

Nominal Plant Model

Perturbed Plant Model

3. SISO Loop Shaping

3.1 Computer Controlled System

3.2 Modeling

[SP05, Sec. 3.7, 1.4, 1.5]

3.3 Example

[SP05, Sec. 2.6, 5.6, 5.7, 5.9]

Reference:

[SP05] S. Skogestad and I. Postlethwaite, *Multivariable Feedback Control; Analysis and Design*,
Second Edition, Wiley, 2005.

4. Robustness and Uncertainty

4.1 Why Robustness?

[SP05, Sec. 4.1.1, 7.1, 9.2]

4.2 Representing Uncertainty [SP05, Sec. 7.2, 7.3, 7.4]

4.3 Uncertain Systems

[SP05, Sec. 8.1, 8.2, 8.3]

4.4 Systems with Structured Uncertainty

[SP05, Sec. 8.2]

Reference:

[SP05] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control; Analysis and Design, Second Edition, Wiley, 2005.

Scaling [SP05, pp. 5-7]

Amplitude Scaling $x' = S_x x$, $x'_i \in [-1, 1]$ Normalization

A method for accomplishing the best scaling for a complex system is first to estimate the maximum values for each system variable and then to scale the system so that each variable varies between -1 and 1

Ex.
$$P = D_y^{-1} \hat{P} D_u$$

$$\begin{cases} D_u := \operatorname{diag}(\hat{u}_1^{\max}, \hat{u}_2^{\max}) \ , & D_y := \operatorname{diag}(\hat{y}_1^{\max}, \hat{y}_2^{\max}) \\ u_i = \hat{u}_i/\hat{u}_i^{\max}, \ u_i \in [-1, 1] \ , \ i = 1, 2 \\ y_i = \hat{y}_i/\hat{y}_i^{\max} \ , \ y_i \in [-1, 1] \ , \ i = 1, 2 \end{cases}$$

$$\text{Spinning Satellite } \hat{u}_i^{\max} = 1 \times 10^{-4} \text{ N/kgm } \hat{y}_i^{\max} = 0.26 \text{ rad/s}$$

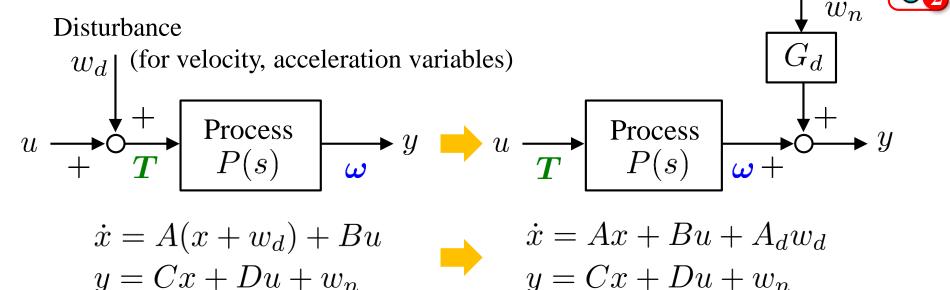
Time Scaling $au = \omega_0 t$

Ex. t: measured in seconds τ : measured in milliseconds $\omega_0=1000$: scaling coefficient

Ex.
$$\dot{x} = \frac{dx}{dt} = \frac{dx}{d(\tau/\omega_0)} = \omega_0 \frac{dx}{d\tau}$$
, $\ddot{x} = \frac{d^2x}{dt^2} = \omega_0^2 \frac{dx}{d\tau^2}$

[FPN09] G.F. Franklin, J.D. Powell and A. E.-Naeini (2009) *Feedback Control of Dynamic Systems*, Sixth Edition, Prentice Hall.

Process Noise Model



Process Noise

It is assumed that the measurement noise inputs w_n and disturbance signals (process noise) w_d are stochastic with known statistical properties. These noises are usually assumed to be uncorrelated zero-mean Gaussian stochastic processes with constant power spectral density matrices V and W respectively.

$$E\{w_d(t)w_d(t)^T\} = W\delta(t - \tau) \quad E\{w_d(t)w_n(t)^T\} = 0$$

$$E\{w_n(t)w_n(t)^T\} = V\delta(t - \tau) \quad E\{w_n(t)w_d(t)^T\} = 0$$

Sensors

Primal-sensor: Gyroscope

These sensors are based on the gyroscopic stiffness of revolving moments of inertia

Single-Axis Gyroscope

Assumption: "Synchro", "Torque": small

$$\begin{bmatrix} \Delta \dot{\theta}_y \\ \Delta \dot{\omega}_y \end{bmatrix} = \begin{bmatrix} \Delta \omega_y \\ (T_x + T_y)/I_y \end{bmatrix}$$

Torques
$$T_x = H_r \Delta \omega_x$$

$$T_y = k_{\theta_y} \Delta \theta_y + k_{\omega_y} \Delta \omega_y$$

 H_r : Spin-rotor Angular momentum

Medium-accuracy RIG

Assumption

The sensor measurements are poorly aligned with the axis of rotation being measured

Sub-sensors Earth sensor, sun sensor

Analogous to a mechanical **spring** restraint

$$T_{y} = k_{\theta_{y}} \Delta \theta_{y}$$
$$\Delta \dot{\omega}_{y} = 0 \Rightarrow \Delta \theta_{y} = -\frac{H_{r}}{k_{\theta}} \Delta \omega_{x}$$

Rate-integrating gyro(RIG)

Analogous to a mechanical **damper** restraint

$$T_y = k_{\omega_y} \Delta \omega_y$$

$$\Delta \dot{\omega}_y = 0$$

$$\Rightarrow \Delta \omega_y = -\frac{H_r}{k_{\omega_y}} \Delta \omega_x$$

$$\Rightarrow \Delta \theta_y = -k_{xy} \Delta \theta_x$$

[Si97] M.J. Sidi (1997) Spacecraft Dynamics and Control: A Practical Engineering Approach, Cambridge University Press.

Actuators

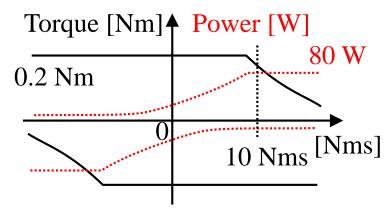
Primal Actuator: Reaction Wheel

Four reaction wheels [Si97, pp. 167-172]

A Fourth RWA(reaction wheel assembly) is installed in order to increase the reliability the entire control system.

Kinematics
$$\begin{bmatrix} T_1 \\ T_2 \\ T_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} T_{i1} \\ T_{i2} \\ T_{i3} \\ T_{i4} \end{bmatrix}$$
 0.2 Nm

Torque-momentum limitations



Angular momentum commands

$$\Delta T_{ij} = \Delta h_w K_j, \ j = 1, 2, 3, 4$$

$$\Delta h_w(s) = \frac{\omega_{w1}(0)}{s + 4K/I_w} \quad [\text{Nms}]$$

Disturbance torques Solar pressure torque, Gravity-gradient torque Aerodynamic torque, Magnetic-field torque

Sub-actuator: Thruster Switching time: 20-40ms (25-50Hz)

[FPN09] G.F. Franklin *et al.*(2009) *Feedback Control of Dynamic Systems*, 6th Ed., Prentice Hall. [Si97] M.J. Sidi (1997) *Spacecraft Dynamics and Control*, Cambridge University Press. 30

Performance Specification

- System Bandwidth: $f_c = 5$ Hz
- Sampling Time θ [s]

$$\frac{1}{40f_c} < \theta < \frac{1}{10f_c} \quad \text{[Le10]}$$

$$0.005 < \theta < 0.02$$

Time Delay Variation

$$0 \le \theta \le 0.02$$
s

Uncertain Gain

caused by process noise and sensor measurements

(20% variation, GM > 2dB)

[Le10] W.S. Levine (Eds.) (2010) The Control Handbook, Second Edition: Control System Fundamentals, Second Edition, CRC Press.

Other requirements:

Phase margin $PM \geq 30\deg$

A direct safeguard against time delay uncertainty

Gain margin $GM \ge 2 \text{ (=6dB)}$

A direct safeguard against steadystate gain uncertainty/error

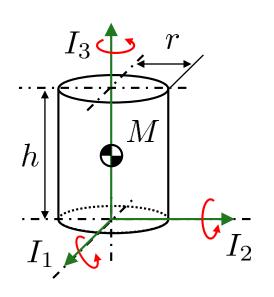
Maximum peak gain of T:

$$M_T \lesssim 1.25 (=2 \text{dB})$$

Maximum peak gain of S:

$$M_S \lesssim 2(=6dB)$$

Characteristics of Rotational Motion of a Spinning Body



$$M = 130 \text{kg} \sim 1100 \text{kg}$$

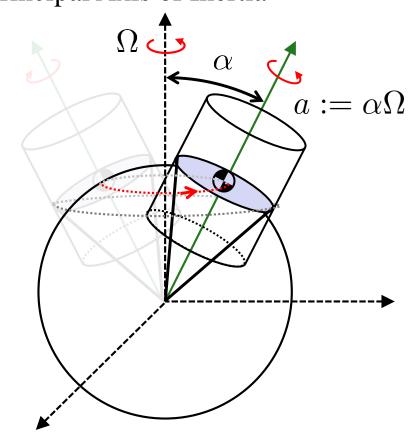
 $r = 0.7 \text{m} \sim 1.1 \text{m}$

$$h = 1.5 \text{m} \sim 3.2 \text{m}$$

$$\Omega = 90 \text{rpm}$$
 or 100rpm

$$I_1 = I_2 = \frac{M(3r^2 + h^2)}{12} + \frac{Mh^2}{4}$$
$$I_3 = \frac{1}{2}Mr^2$$

Principal Axis of Inertia



MOIR: moment of inertia ratio $\sigma = \frac{I_3}{I_1}$ Nutation angle $\alpha = 1 - \sigma$

Precession angle β Spin angle γ

 $(\Omega = \dot{\gamma})$

32

Rigid Body Attitude Configurations

Attitude Representations	Global?	Unique?
Euler angles	×	×
Rodrigues parameters	×	×
Modified Rodrigues parameters	×	×
Quaternions,	0	×
Axis-angle	0	×
Rotation matrix	0	0

Rotation matrix $R \in SO(3)$ The set of all rotation matrices SO(3) Special orthogonal group of rigid rotations in \mathbb{R}^3

Kinematics
$$\dot{R} = R \operatorname{sk}(\omega)$$
 $\operatorname{sk}(\omega) = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}$

 $\omega \in \mathbb{R}^3$ The angular velocity of the body relative to the reference frame

Dynamics $I \cdot \dot{\omega} + \omega \times (I \cdot \omega) = T$ (Euler's moment equations)

[CSC11] N.A. Chaturvedi, A.K. Sanyal and N.H. McClamroch. Rigid-body Attitude Control, *IEEE Control Systems Magazine*, **31**(3) 30-51, 2011.

Design Relations

Maximum Peak Magnitude of T

$$M_T \simeq \frac{1}{2\sin(PM/2)}$$

Phase Margin

$$PM = \tan^{-1} \left[\frac{2\zeta}{\sqrt{\sqrt{1 + 4\zeta^4} - 2\zeta^2}} \right] \begin{bmatrix} M_T \\ 0 \\ -3[dB] \\ -10 \end{bmatrix}$$

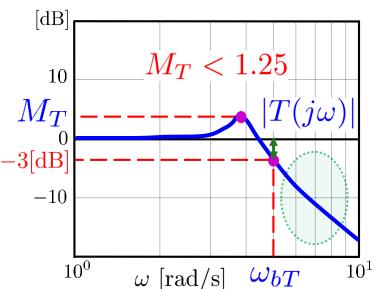
$$\approx 100\zeta \quad (<70^\circ)$$

Bandwidth

$$\omega_c \le \omega_{bT} \le 2\omega_c$$
 $\omega_{bT} = \omega_c \quad \text{if} \quad PM = 90^\circ$
 $\omega_{bT} \simeq 2\omega_c \quad \text{if} \quad PM \le 45^\circ$
 $0 < \omega_b \le \omega_c$
 $\omega_b = \omega_c \quad \text{if} \quad PM = 90^\circ$

Complementary Sensitivity $T = \frac{PK}{1 + PK}$

$$T = \frac{PK}{1 + PK}$$



 M_T : Maximum Peak Magnitude of T

$$M_T = \max_{\omega} |T(j\omega)| < 1.25 \text{ (2 dB)}$$

 ω_{bT} : Bandwidth Frequency of T $|T(j\omega_{bT})| = \frac{1}{\sqrt{2}} (-3 \text{ dB})$

[FPN09] G.F. Franklin, J.D. Powell and A. E.-Naeini (2009) Feedback Control of Dynamic Systems, Sixth Edition, Prentice Hall.

Step response analysis/Performance criteria

K > 0

Rise time
$$T_r$$
 XK T_p XK T_p XK T_p XK T_p XK T_p T_p

Peak time
$$T_p$$
Overshoot M_p
Error tolerance Δ
 0.1
 T_r
 T_s
 0.1
 T_r
 T_s

$$T_r$$
 T_s
Second-order System

First-order System

$$G_1(s) = \frac{\kappa}{Ts+1} \quad T > 0$$

Second-order System
$$G_2(s) = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \quad \frac{\omega_n > 0}{\zeta \ge 0}$$

Rise time
$$T_r = \frac{\pi/2 + \arcsin \zeta}{\omega_r \sqrt{1-\zeta^2}}$$

$$T_r = (\ln 9)T \approx 2.2T$$

$$\frac{\mathsf{me}}{3T}$$
 if $\Lambda = 5$

Settling time

$$3T ext{ if } \Delta = 5\%$$

ettling time
$$T_s \approx \begin{cases} 3T & \text{if } \Delta = 5\% \\ 4T & \text{if } \Delta = 2\% \end{cases}$$

Overshoot
$$M_p = 0$$

$$\begin{cases} 3T & \text{if } \Delta = 5\% \\ 4T & \text{if } \Delta = 2\% \end{cases}$$

$$T_s pprox \begin{cases} 3/\zeta \omega_n & \text{if } \Delta = 5\% \\ 4/\zeta \omega_n & \text{if } \Delta = 2\% \end{cases}$$

Settling time

Overshoot
$$M_p = Ke^{-\zeta\pi/\sqrt{1-\zeta^2}}$$

Peak Time $T_p = \pi/(\omega_n\sqrt{1-\zeta^2})$

$$=2\%$$
 $\zeta\pi/\sqrt{1-\zeta^2}$

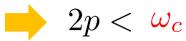
Controllability analysis with SISO feedback control

[SP05, pp. 206-209]

 M_1 Margin to stay within constraints |u| < 1

 M_2 Margin for performance |e| < 1

 M_3 Margin because of RHP-pole p



 M_4 Margin because of RHP-zero z

 M_5 Margin because of frequency ω_u where plant has -180° phase lag

$$\omega_c < \omega_u$$

 M_6 Margin because of delay θ

$$\omega_c < 1/\theta$$

Typically, the closed-loop bandwidth of the spacecraft is an order of magnitude less than the lowest mode frequency, and as long as the controller does not excite any of the flexible modes, the sampling period may be selected solely based on the closed-loop bandwidth.

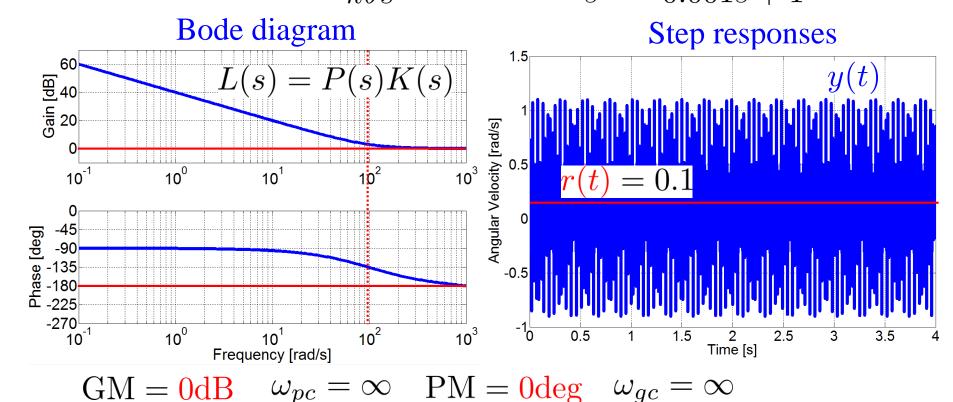
[Le10] W.S. Levine (Eds.) (2010) The Control Handbook, Second Edition: Control System Fundamentals, Second Edition, CRC Press.

Spinning Satellite: Try SISO Controller Design

Internal Model Controller(IMC) design [SP05, p. 55, Ex. 2.13]

Plant:
$$P(s) = k \frac{1 - \theta s}{\tau_0^2 s^2 + 2\tau_0 \zeta s + 1}$$
 $k = -1$ $\theta = 0.01$ $\tau_0 = 0.1$ $\zeta = 0$

PID: $K(s) = \frac{\tau_0^2 s^2 + 2\tau_0 \zeta s + 1}{k\theta s} \simeq -\frac{100}{s} - \frac{s}{0.001s + 1}$

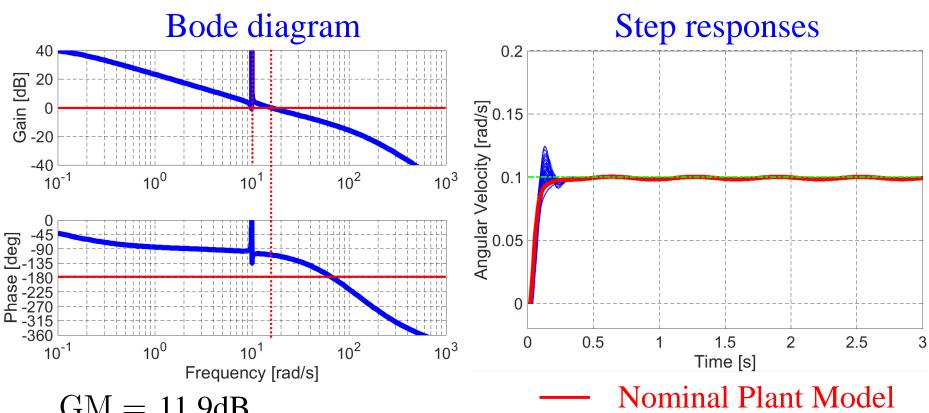


cf. Skogestad's Internal Model Controller(SIMC) [SP05, p. 57]

Spinning Satellite: Try SISO Controller Design

μ Controller (Reduced Order 6)

$$K_s^{\mu}(s) = \frac{-377.83(s+5160)(s^2+0.1154s+98.39)(s^2+73.21s+1702)}{(s+702.9)(s+0.115)(s^2+70.57s+1855)(s^2+235.2s+17040)}$$



GM = 11.9dB

PM = 71.1 deg

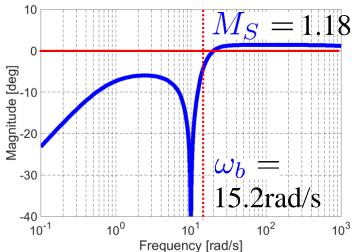
 $\omega_{pc} = 67.4 \text{rad/s}$

 $\omega_{qc} = 15.7 \text{rad/s}$

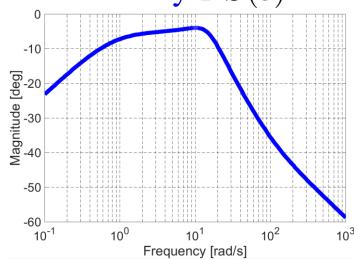
Perturbed Plant Model

PID compensator Gang of Four [AM08, p. 317]

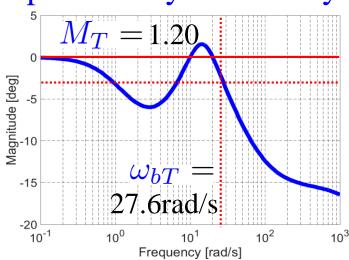
Sensitivity S(s)



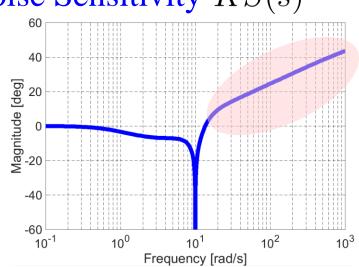
Load Sensitivity PS(s)



Complementary Sensitivity T(s)

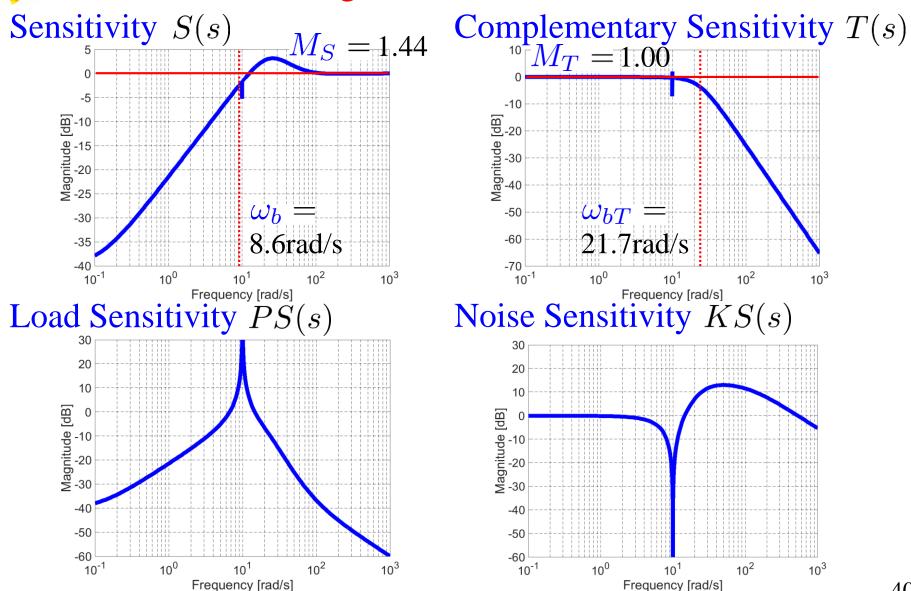


Noise Sensitivity KS(s)



39

 H_2 -controller Gang of Four [AM08, p. 317]

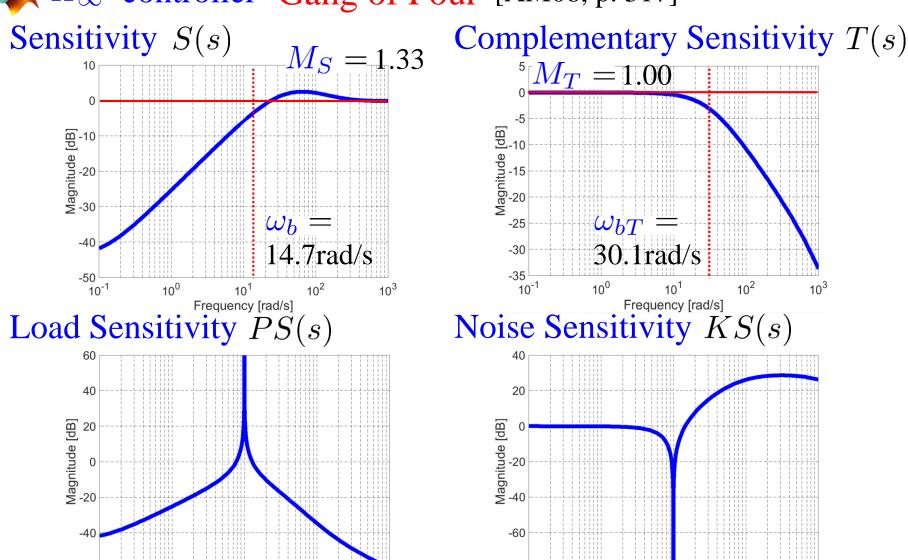


[AM08] K.J. Astrom and R.M. Murray, Feedback Systems, Princeton University Press, 2008

40

10⁻¹

 H_{∞} -controller Gang of Four [AM08, p. 317]



41

 10^{2}

Frequency [rad/s]

10³

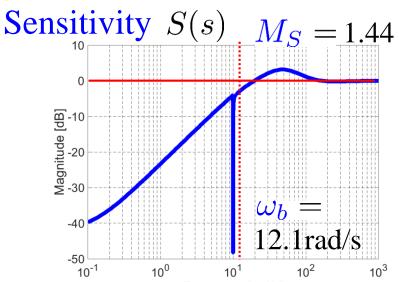
10²

Frequency [rad/s]

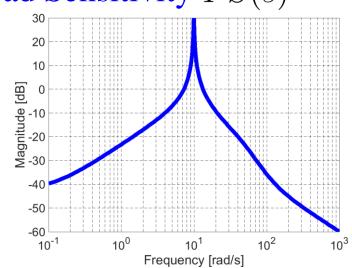
-80

 μ -synthesis

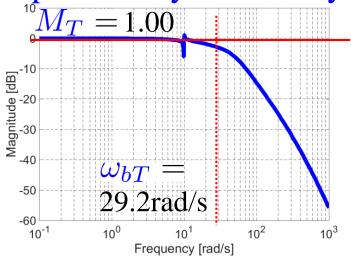
Gang of Four [AM08, p. 317]



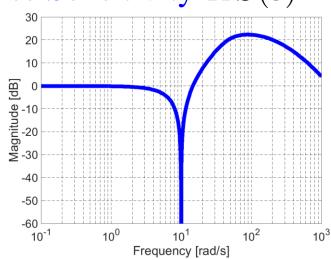
Load Sensitivity PS(s)



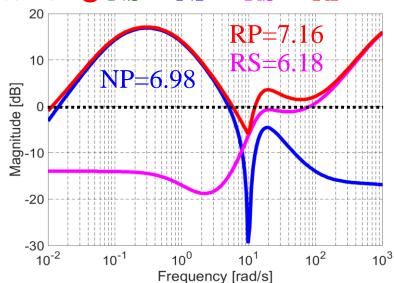
Complementary Sensitivity T(s)



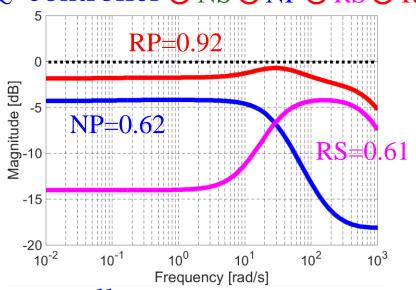
Noise Sensitivity KS(s)



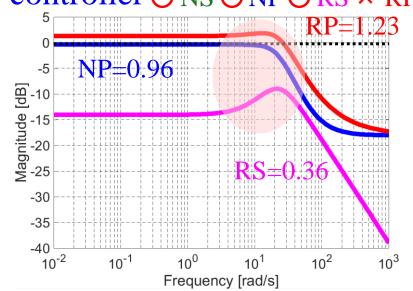
Spinning Satellite: SISO Controller Design \checkmark μ -analysis

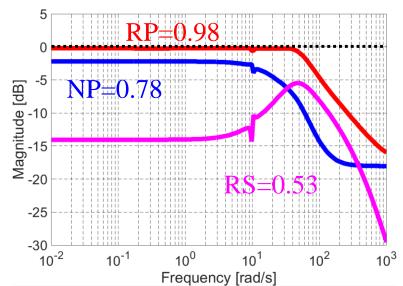


H_{∞} -controller O NS O NP O RS O RP



H_2 -controller O NS O NP O RS × RP μ -controller ONS ONP ORS ORP

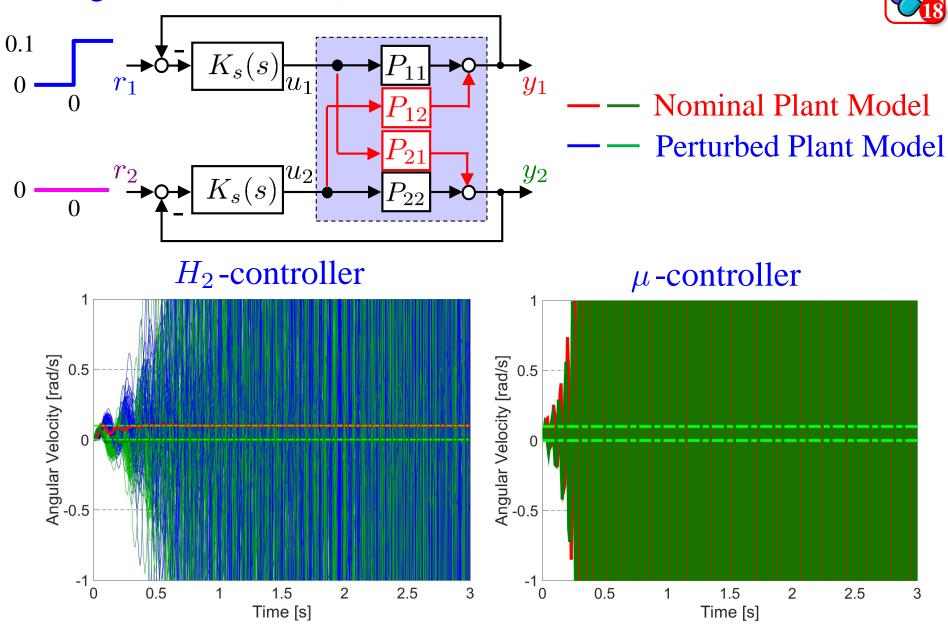




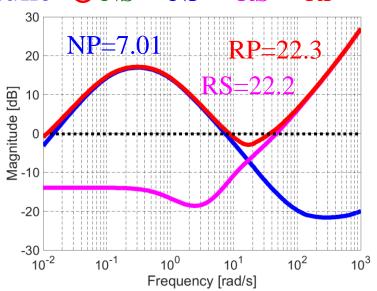
1. Diagonal Controller (decentralized control)

 $NS \times NP \times RS \times RP$

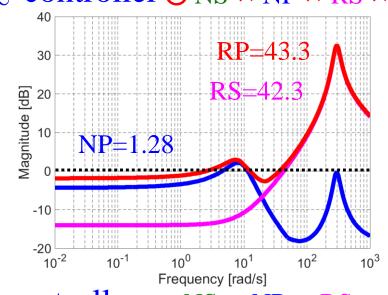
 \times NS \times NP \times RS \times RP



1. Diagonal Controller (decentralized control)



 H_{∞} -controller \bigcirc NS \times NP \times RS \times RP



 H_2 -controller \bigcirc NS \times NP \times RS \times RP μ -controller \times NS \times NP \times RS \times RP

