Analysis and Design of Linear Control System –Part2-

Instructor: Prof. Masayuki Fujita

2nd Lecture

12 Robust Performance

- **12.1 Modeling Uncertainty** (pp.347 to 352)
- (9.2 The Nyquist Criterion) (pp.270 to 278)
- (9.3 Stability Margins) (pp.278 to 282)
- 12.2 Stability in the Presence of Uncertainty (pp.352 to 358)

Keyword : Modeling Uncertainty Robust Stability

- **12.2 Stability in the Presence of Uncertainty**
- (12.3 Performance in the Presence of Uncertainty)
- (11.5 Fundamental Limitation)(pp.331 to 340) (pp.358 to 361)

Keyword : Complementary Sensitivity Function Small Gain Theorem

- **12.1 Modeling Uncertainty**
 - Parametric uncertainty

parameters describing the system are unknown

Mass of a car changes with the number of passengers mass 1600 < m < 2000(3rd) (4th) (5th) gear ratio $\alpha = 10, 12, 14$ speed $10 \le v_e \le 40$

$$\theta = 3^{\circ}$$

Disturbance response

Modeling Uncertainty

• Parametric uncertainty

parameters describing the system are unknown

Ex. 12.1The design based on a simple nominal
model will give satisfactory control.

• Unmodeled dynamics

neglected mechanisms such that the simple model does not include.

- detailed model of the engine dynamics
- slight delays that can occur in electronically controlled engines

Unmodeled Dynamics

Vibration mode 0.5 S http://mobile.jaxa.jp/gallery_list/ vibration mode index.php?category=iss $\omega_1 = 0.2, \omega_2 = 0.5, \omega_3 = 2$ 40 $\omega_{4} = 10, \zeta_{i} = 0.02$ 30 Nominal System *P* 20 (Rigid body mode) 10 0 -10-20S -30 \boldsymbol{P} $\tilde{P} = P + \Delta$ -40-50 10⁻²

 10^{-1}

10⁰

Frequency response $Freq \omega$

 10^{1}

 10^{2}

[rad/s]

Unmodeled Dynamics

Additive perturbations

Multiplicative perturbations $\widetilde{P} = (1 + \delta)P$

- $\delta \coloneqq \Delta / P$
- P : nominal model
- \widetilde{P} : actual model
- Δ, δ : unmodeled dynamics

[When Are Two Systems Similar ?] [Ex. 12.2] Similar in Open Loop but Large Differences in Closed Loop

[When Are Two Systems Similar ?]

[Ex. 12.3] Different in Open Loop but Similar in Closed Loop

Nyquist Criterion (§ 9.2)

[/]

Robust Stability Using Nyquist's Criterion Additive Uncertainty

$$P \longrightarrow P + \Delta \quad \Delta$$
: stable perturbations

Loop Transfer Function

$$L = PC \longrightarrow (P + \Delta)C = PC + C\Delta$$
$$= L + C\Delta$$

Robust Stability Using Nyquist's Criterion Additive Uncertainty Perturbed Nyquist curve doesn't reach -1when $\left|C\Delta\right| < \left|1 + L\right| \qquad \left|\Delta\right| < \left|\frac{1 + PC}{C}\right|$ m Re 0 -0.2 $\left|\Delta\right| < \frac{1}{|CS|} \quad \left(\because S = \frac{1}{1 + PC}\right)$ -0.4 -0.6 -0.8-0.8 -0.60.2 –∩ 4 -0 2 Fig. 12.5(b) **Multiplicative Uncertainty** $\left| \delta \right| = \left| \frac{\Delta}{P} \right| < \left| \frac{1 + PC}{PC} \right| = \frac{1}{|T|} \left(\because T = \frac{PC}{1 + PC} \right) \quad P$

Robust Stability Using Nyquist's Criterion

Performance in the Presence of Uncertainty (§ 12.3)

Measurement noise typically has high frequencies

Bode's Integral Formula (§ 11.5)

Complementary sensitivity function:

$$\int_{0}^{\infty} \frac{\log |T(j\omega)|}{\omega^{2}} d\omega = \pi \sum \frac{1}{z_{i}}$$
(11.20)

where the summation is over all right half-plane zeros.

RHP zerosfast (big): better
slow (small): worse

 $\log |T|$

 $\log |T| > 0$

Sensitivity function: (1st lecture)

$$\int_{0}^{\infty} \log |S(j\omega)| d\omega = \pi \sum_{\substack{k \ (11.19)}} p_{k}$$

Complementary Sensitivity Function

$$T(s) = \frac{P(s)C(s)}{1 + P(s)C(s)} \qquad \left(S + T = \frac{1}{1 + PC} + \frac{PC}{1 + PC} = 1 \right)$$

$$\omega_{bT}$$
: Complementary Sensitivity
Bandwidth Frequency [d $|T(j\omega)| = \frac{1}{\sqrt{2}}$ (-3[dB])

$$M_T$$
: Maximum Peak
Magnitude of $T(j\omega)$

$$M_T = \max_{\omega} |T(j\omega)|$$
$$M_T < 1.25 \ (2[dB])$$

[Ex. 12.5] Cruise Control

Robust Stability (sufficient condition)

 $\left|\delta\right| < \frac{\mathbf{1}}{|T|}$

around the gain crossover frequencies small $|\delta(j\omega)|$ is required A simple model that describes the process dynamics well around the crossover frequency is often sufficient for design

Robust Stability Using Small Gain Theorem

sufficient condition for robust stability

$$\delta(j\omega) \Big| < \frac{1}{|T(j\omega)|} \quad \forall \omega \ge 0 \quad (12.6)$$

another interpretation by using small gain theorem

Theorem 9.4 Small Gain Theorem (§ 9.5)

Consider the closed loop system shown in Fig. 9.15, where H_1 and H_2 are stable systems and the signal spaces are properly defined. Let the gains of the systems H_1 and H_2 be γ_1 and γ_2 . Then the closed loop system is input/output stable if $\gamma_1\gamma_2 < 1$.

Robust Stability Using Small Gain Theorem

2nd Lecture

12 Robust Performance

- **12.1 Modeling Uncertainty** (pp.347 to 352)
- (9.2 The Nyquist Criterion) (pp.270 to 278)
- (9.3 Stability Margins) (pp.278 to 282)
- 12.2 Stability in the Presence of Uncertainty (pp.352 to 358)

Keyword : Modeling Uncertainty Robust Stability

- **12.2 Stability in the Presence of Uncertainty**
- (12.3 Performance in the Presence of Uncertainty)
- (11.5 Fundamental Limitation)(pp.331 to 340) (pp.358 to 361)

Keyword : Complementary Sensitivity Function Small Gain Theorem